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ABSTRACT 23 

 The present study examines how mean state biases in sea-surface temperature (SST), 24 

surface wind and precipitation affect model skill in reproducing surface wind and precipi-25 

tation anomalies in the tropics. This is done using theoretical arguments, atmosphere-only 26 

experiments in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and cus-27 

tomized sensitivity tests with the SINTEX-F general circulation model. Theoretical ar-28 

guments suggest that under certain conditions the root mean square error (RMSE) of a 29 

variable can be related to its variance and its mean, which indicates a direct link between 30 

bias and skill. The anomaly correlation coefficient (ACC), on the other hand, is generally 31 

not related to either the mean state or its variance, as several examples document. Multi-32 

model atmosphere-only experiments with prescribed SST warming suggest that both 33 

ACC and RMSE of surface wind and precipitation are rather insensitive to warming on 34 

the order of 4 K. When SST biases from a free-running control simulation are prescribed 35 

in SINTEX-F, the ACC of surface wind is almost unaffected in the equatorial Pacific and 36 

Atlantic, while that of precipitation decreases noticeably in some regions but also in-37 

creases in others. The RMSE of both fields shows widespread deterioration. There is a 38 

tendency for warm SST biases to increase the signal-to-noise ratio and sometimes ACC 39 

as well. The results suggest that, in the context of atmosphere-only simulations, improv-40 

ing SST and precipitation biases does not necessarily improve the skill in reproducing 41 

anomalies of surface wind and precipitation. 42 

43 
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1. Introduction 44 

The numerical simulation of weather and climate has made substantial progress over 45 

the last several decades (Edwards 2000; Richter et al. 2016). Nevertheless, systematic 46 

errors continue to pose a challenge to general circulation models (GCMs; de Szoeke and 47 

Xie 2008; Bellenger et al. 2013; Nagura et al. 2015; Richter et al. 2014a). While compu-48 

tational power has increased tremendously over the last few decades most climate models 49 

still cannot resolve scales below 100 km and even numerical weather prediction typically 50 

cannot resolve scales below 10 km. Due to these limitations to model resolution, many 51 

processes that occur on small spatial scales have to be parameterized. Among these pro-52 

cesses are cumulus convection, boundary layer turbulence, and cloud microphysics. 53 

While such parameterizations have been reasonably successful, as demonstrated by the 54 

success of numerical weather prediction (NWP) in predicting weather and that of climate 55 

models in reproducing past and current climates, they necessarily involve the use of ap-56 

proximations, simplifications and ad-hoc assumptions, and also suffer from the limited 57 

availability of observational data. Thus deficiencies in parameterizations are thought to 58 

be the main cause of some of the persistent biases in GCMs, which, in the tropics, include 59 

errors in the mean position of the intertropical convergence zone (ITCZ; Li and Xie 60 

2014), underrepresentation of low-level stratocumulus clouds (Richter 2015), and inade-61 

quate representation of the intraseasonal oscillation (Hung et al. 2013). 62 

With the continuing increase in computing power it is possible that cumulus convec-63 

tion, whose representation requires a resolution of 5 km or higher, will be explicitly re-64 

solved over the next one to two decades, thus eliminating the need for cumulus parame-65 

terization. Boundary layer turbulence and cloud microphysics, on the other hand, require 66 
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a model resolution that is several orders of magnitude higher and therefore will need to 67 

be parameterized even in the long term. This is one of the reasons why systematic model 68 

errors (or biases) will likely continue to be an issue in GCMs. 69 

Much work has been done to identify biases and alleviate them. By way of motiva-70 

tion, such studies often state that GCM biases deteriorate the skill of seasonal predictions 71 

(as well as undermine confidence in global change projections). The often implicit as-72 

sumption is that alleviating biases will lead to a more realistic representation of variabil-73 

ity and more skillful predictions. Few studies, however, have thoroughly investigated this 74 

link between mean state bias and prediction skill. The ones that have been performed do 75 

point to a link but results are sometimes ambiguous. Perhaps the clearest evidence for a 76 

link comes from a study by Manganello and Huang (2009), who used a heat flux correc-77 

tion scheme to reduce sea-surface temperature (SST) errors in the eastern tropical Pacific. 78 

The flux correction, by design, drastically reduced the SST errors in the model but also 79 

led to more realistic SST variability in the eastern Pacific, with a peak in boreal winter, as 80 

observed, whereas the control simulation produced spurious peaks in spring and summer. 81 

Moreover, the improvement in mean and variability were accompanied by improved El 82 

Niño/Southern Oscillation (ENSO) prediction skill from lead month 6 onward. The au-83 

thors linked the relatively poor skill in their control model to the spurious variability peak 84 

in summer: predictions initialized in January managed to grow SST anomalies until July 85 

but could not maintain them afterward. Similar results were obtained by Ding et al. 86 

(2015b) who found that climatological surface heat flux correction in a model with pre-87 

scribed surface momentum anomalies dramatically increased the model’s ability to re-88 
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produce SST anomalies. They attributed the increased simulation skill to the influence of 89 

SST bias reduction on the climatology of surface wind stress and subsurface temperature. 90 

Gualdi et al. (2005) show that increased atmospheric resolution in their model leads 91 

to both a reduced easterly surface wind bias over the equatorial Pacific and generally im-92 

proved ENSO prediction skill. Lee et al. (2010) used a pattern correlation metric to exam-93 

ine the relation between mean state and prediction skill at 1-month lead time in the global 94 

tropics for a multi-model ensemble of reforecasts. They find that models with higher pat-95 

tern correlation for the mean state also tend to have higher pattern correlation for the 96 

anomalies. This intermodel relation varies considerably depending on the season, and is 97 

more pronounced for SST than for precipitation. Magnusson et al. (2013) study the im-98 

pact of heat and momentum flux correction on the prediction skill of a version of the Eu-99 

ropean Centre for Medium Range Weather Forecasts (ECMWF) model. They obtain a 100 

slight improvement in SST anomaly correlation coefficient (ACC) in the eastern tropical 101 

Pacific at lead months 6 and 7 for the reforecasts with flux correction. 102 

DelSole and Shukla (2010) used the DEMETER multi-model reforecasts to examine 103 

the related issue of whether skill is affected by model drift (i.e. the model’s transition 104 

from observation-based initial conditions toward its biased equilibrium state during the 105 

forecast period). Based on the intermodel correlation between skill and bias over the first 106 

three forecast months they concluded that there is a robust inverse relation, particularly 107 

for the tropical Pacific. However, due to the fact that the intermodel correlations were 108 

based on only 7 models, there is some uncertainty regarding the results. It is also not clear 109 

to what extent the drift during the first three forecast months resembles the equilibrium 110 

bias. 111 



 6 

There is no shortage of studies on the link between mean state biases and variability 112 

errors (e.g. Sperber and Palmer 1996; Guilyardi 2006; Spencer et al. 2007; Jin et al. 2008; 113 

Richter et al. 2014a; Ding et al. 2015a; Deppenmeier et al. 2016) but these studies typi-114 

cally do not examine how variability errors affect prediction skill. Thus it appears that 115 

much work remains to be done to study the link between seasonal prediction skill and 116 

model performance in terms of mean state and variability. This is an important issue with 117 

practical implications because a deeper understanding of the link between bias and pre-118 

diction skill can help the community understand which improvement efforts are likely to 119 

yield the highest return in terms of added prediction skill. It might also inform us that 120 

some regions are not likely to benefit much from further model improvement, at least as 121 

far as seasonal prediction skill is concerned. The tropical Atlantic may turn out to be such 122 

a region. On the one hand, SST and surface wind biases are severe there (Davey et al. 123 

2002; Richter et al. 2008; Richter et al. 2014a) and many prediction models still struggle 124 

to beat persistence forecasts, as can be seen in Fig. 1 for a model ensemble from the Cli-125 

mate Historical Forecast Project (CHFP) intercomparison (Kirtman and Pirani 2009). On 126 

the other hand, it has been shown that, despite severe biases, some models produce rela-127 

tively realistic variability patterns (Richter et al. 2014a) and that the theoretical predicta-128 

bility may be much lower than in the tropical Pacific (Richter et al. 2014b). This suggests 129 

that some models are able to capture the relevant atmosphere-ocean coupling and that the 130 

limiting factor for forecast skill in the region might not be model biases but predictability. 131 

In this context it is instructive to consider the results of Tompkins and Feudale (2010), 132 

who showed that an enhanced network of ocean observations could improve the ECMWF 133 
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forecast skill for the West African monsoon in the absence of any major model improve-134 

ment. 135 

Considering the issues discussed above we argue that it is important to obtain a 136 

deeper understanding of the link between mean state biases and prediction skill. The pre-137 

sent study aims to take a first step in this direction by focusing on the ability of models to 138 

reproduce surface wind and precipitation anomalies when forced with observed SSTs, i.e. 139 

in an Atmospheric Model Intercomparison Project (AMIP)-style setting. One could con-140 

sider this as a forecast at lead time 0, and it may provide an upper limit of the prediction 141 

skill one would expect to achieve. This statement should be qualified, however, because 142 

it has been shown that atmosphere-only experiments may misrepresent surface heat flux-143 

es (Wang et al. 2005; Wu and Kirtmann 2005) and therefore coupling may increase pre-144 

cipitation skill at short lead times (Kang et al. 2004; Lee et al. 2010; DelSole and Shukla 145 

2012). 146 

Before examining model simulations, we will introduce the models and experiments 147 

used in section 2 and discuss some general considerations in section 3. To understand the 148 

impact of mean state SST warming on prediction skill we will examine three experiments 149 

from the Coupled Model Intercomparison Project Phase 5 (CMIP5) in section 4. These 150 

experiments prescribe observed SST from 1979-2008 but one experiment adds a spatially 151 

uniform 4K warming, while another one adds a patterned warming typical of global 152 

warming simulations. The purpose is to test the mean state dependence of the atmospher-153 

ic response to SST anomalies. The impact of mean state biases will be further examined 154 

in dedicated sensitivity experiments with one particular model in section 5, while sum-155 

mary and conclusions will be given in section 6. 156 
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2. Method and experiment description 157 

We examine the influence of biases on skill using two strategies. In the first, we 158 

study how skill is affected by intrinsic atmospheric biases, i.e. how a model’s ability to 159 

reproduce surface wind and precipitation anomalies is affected by the respective biases in 160 

those fields. The second method is to examine how skill (in surface wind and precipita-161 

tion) is affected by errors in the climatology of the SST boundary forcing. Details are 162 

given in the following. 163 

2.1. CMIP5 experiments 164 

We use AMIP-type simulations performed by several modeling centers for the 165 

CMIP5 model intercomparison. The basic experiment, called AMIP, consists of an at-166 

mospheric GCM (AGCM) forced with observed SST for the period 1979-2008. Monthly 167 

mean SSTs are interpolated to daily values. This experiment will be used to pursue the 168 

first strategy, i.e. exploring the influence of intrinsic atmospheric biases on skill. The SST 169 

boundary forcing is essentially the same in all models (except for interpolation errors) 170 

and thus we expect bias and skill of our fields of interest to be determined mainly by the 171 

atmospheric model component. It is, of course, possible that extraneous influences, e.g. 172 

from the land surface model obscure the bias-skill relation. 173 

Two additional AMIP-type experiments in the CMIP5 archive allow us to pursue the 174 

second strategy, i.e. examining the sensitivity of skill to errors in the SST boundary forc-175 

ing. In experiment amip4K a constant value of 4 K is added to the AMIP SST every-176 

where over the ice-free oceans. Experiment amipFuture adds a warming pattern that is 177 

also constant in time, but varies in space. The pattern is derived from the ensemble aver-178 

age of several global warming simulations and thus includes, among others, warming that 179 
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is enhanced at the equator. The original purpose of amip4K and amipFuture was to ex-180 

plore various aspects of climate change. In the present study, on the other hand, we are 181 

not concerned with climate change, but rather use these experiments as a convenient way 182 

to investigate how the surface wind and precipitation responses are affected by unrealistic 183 

SST values (“unrealistic” in the sense of being inconsistent with the present-day green-184 

house gas forcing applied in the models), with the standard AMIP experiment serving as 185 

our control. 186 

To compare experiments, we calculate the ensemble average over a set of 11 models 187 

(Table 1), which is the largest subset that performed all three experiments. The resulting 188 

time series spans the period 1979-2008 (360 monthly means). The multi-model climatol-189 

ogy and anomalies are calculated based on this ensemble average. For experiment AMIP, 190 

we also analyze intermodel correlations, with climatology and anomalies calculated for 191 

each model separately. 192 

2.2. Sensitivity experiments with SINTEX-F 193 

While the SSTs in amip4K and amipFuture provide a good opportunity to explore 194 

surface wind and precipitation sensitivity to the mean state, the SST distributions are 195 

quite different from typical model biases. To test specifically how SST biases affect the 196 

ability of a model to reproduce surface wind and precipitation we perform experiments 197 

with one particular model, the SINTEX-F GCM. This model was developed under the 198 

European Union-Japan collaboration project (Luo et al. 2003) and is based on the Euro-199 

pean SINTEX model (Gualdi et al. 2003). The version used here consists of the ECHAM 200 

4.6 AGCM (Roeckner et al. 1996), the OPA 8.2 oceanic GCM (OGCM; Madec et al. 201 

1998), and the OASIS 2.4 coupler (Valcke et al. 2000). The atmospheric resolution is 202 

T106 (approximately 1.1°), with 19 vertical levels, 4-5 of which are inside the planetary 203 
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boundary layer. The oceanic resolution is 2° x 2° with the meridional resolution increas-204 

ing to 0.5° at the equator. The OGCM has 31 vertical levels, 19 of which lie within the 205 

top 400m. 206 

The control experiment (CTRL hereafter) is a simulation in which SSTs are strongly 207 

restored  to the Optimally Interpolated SST (OISST; Reynolds et al. 2002) observations 208 

from 1982 to 2014. The strong restoring results in SST boundary conditions that are very 209 

similar to an AMIP-type simulation but may differ from observations on the order of 0.1 210 

K. CTRL comprises 9 ensemble members, which are generated by using three restoring 211 

time scales (1-day, 2-day, 3-day) and three settings for the surface momentum flux for-212 

mulation (Luo et al. 2005). 213 

We perform two sensitivity tests, both of which use SSTs from a free-running 500-214 

year control simulation (FR-CTRL). In the first experiment (Atl_bias), SST biases from 215 

FR-CTRL are imposed on the tropical Atlantic between 30°S and 30°N. This is achieved 216 

by subtracting OISST climatology (stratified by calendar month) from the original SST 217 

boundary conditions and adding the corresponding FR-CTRL climatology values. Thus 218 

the SST anomalies are the same as in OISST but the mean state in the tropical Atlantic is 219 

that of FR-CTRL and therefore features all the biases of the latter. In the second experi-220 

ment (Pac_bias), an analogous procedure is applied to the tropical Pacific between 30°S 221 

and 30°N. Experiments with SST restoring in various regions using SINTEX-F were also 222 

performed by other authors, e.g. Sasaki et al. (2015), but none of these restored the SST 223 

to a biased state. The sensitivity experiments also consist of 9 ensemble members, which 224 

were generated by perturbing the SST boundary conditions with random values of 0.01 K 225 

amplitude.  226 
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Our reference data set for surface wind is the European Centre for Medium Range 227 

Weather Forecasts (ECMWF) Interim reanalysis (Dee et al. 2011). For precipitation we 228 

use the Global Precipitation Climatology Project (GPCP) version 2.2, which is a blend of 229 

satellite and station data (Adler et al. 2003). 230 

3. General considerations 231 

3.1. Relation between MSE, ACC, and biases 232 

Here we examine whether there is an explicit mathematical link between biases (in 233 

both mean and variability) on the one hand and prediction skill on the other. The 234 

measures of prediction skill examined here are the anomaly correlation coefficient (ACC) 235 

and the mean square error (MSE). ACC is defined as the Pearson correlation coefficient 236 

between the predicted (p) and observed anomalies (o): 237 

𝑟 𝑝, 𝑜 =
(𝑝' − 𝑝)(𝑜' − 𝑜)*

'+,

(𝑝' − 𝑝)-*
'+, (𝑜' − 𝑜)-*

'+,
 238 

where the overbar denotes the seasonally stratified climatological time average, pi 239 

and oi are the seasonally stratified total values, and i is the time index. Likewise, MSE is 240 

defined through the following equation: 241 

𝑀𝑆𝐸∗(𝑝, 𝑜) = ,
*

(𝑝' − 𝑜')-*
'+, , 242 

where the asterisk indicates the use of total fields in the calculation of MSE. ACC 243 

and MSE* are related through the following equation (e.g. Barnston 1992): 244 

𝑀𝑆𝐸∗ 𝑝, 𝑜 = 𝑠𝑡𝑑- 𝑝 + 𝑠𝑡𝑑- 𝑜 − 2𝑠𝑡𝑑 𝑝 𝑠𝑡𝑑(𝑜)𝑟 𝑝, 𝑜 + 𝑏-(𝑝)     (1) 245 

where p and o denote the total fields, std is standard deviation, and b(p) is the mean 246 

bias of the prediction, i.e. 𝑏 = 𝑝 − 𝑜. In (1), MSE* and bias are explicitly related because 247 
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the total fields are used. Once the seasonal mean is removed, as is routinely done in sea-248 

sonal prediction, the bias term drops out and (1) becomes 249 

𝑀𝑆𝐸 𝑝, 𝑜 = 𝑠𝑡𝑑- 𝑝 + 𝑠𝑡𝑑- 𝑜 − 2𝑠𝑡𝑑 𝑝 𝑠𝑡𝑑(𝑜)𝑟 𝑝, 𝑜      (2) 250 

Eq. 2 shows that MSE decreases with increasing ACC. Further, if the predicted vari-251 

ance is much larger than the observed one, it is easy to see that the first term on the right-252 

hand side of (2) dominates (independent of ACC). In this case, MSE is essentially deter-253 

mined by the standard deviation of the prediction model. Likewise, if std(o) >> std(p) 254 

then std(o) dominates MSE. 255 

In the case of std(p) = std(o), i.e. predicted standard deviation is error-free, (2) can 256 

be rearranged to give 𝑀𝑆𝐸 𝑝, 𝑜 = 2𝑠𝑡𝑑- 𝑜 1 − 𝑟(𝑝, 𝑜) , which states that MSE is a 257 

simple function of ACC and the observed variance (which equals the predicted variance). 258 

Last, if ACC is close to 1, (2) can be approximated as 𝑀𝑆𝐸 𝑝, 𝑜 = 𝑠𝑡𝑑- 𝑝 +259 

𝑠𝑡𝑑- 𝑜 − 2𝑠𝑡𝑑 𝑝 𝑠𝑡𝑑(𝑜), or, after some manipulation, 260 

RMSE(p,o)= 𝑠𝑡𝑑 𝑝 − 𝑠𝑡𝑑(𝑜)          (3) 261 

where RMSE is the root mean square error and the vertical bars denote the absolute 262 

value function. (3) suggests that, for ACC close to 1, RMSE is proportional to the abso-263 

lute difference between the predicted and observed standard deviations. We test this rela-264 

tion for precipitation in the Niño 3.4 region (170º-120º W, 5º S-5ºN) using the AMIP 265 

multi-model ensemble. Figure 2a scatters RMSE versus the RHS of (3). The ACC is 0.9 266 

or higher in most models so that the approximation used to derive (3) holds reasonably 267 

well. This is borne out by the high intermodel correlation coefficient of 0.96. RMSE is a 268 

little higher than what would be expected if (3) were to hold exactly, presumably due to 269 

the ACC being less than one (see Fig. 3a). 270 



 13 

It is intuitively obvious that errors in the predicted variance will affect RMSE and so 271 

the high degree of intermodel correlation is essentially down to the ACC being consist-272 

ently high across models. However, for an intermittent, positive definite variable like 273 

precipitation there is another aspect to Eq. (3), which may link skill to the mean state. 274 

Since precipitation is often zero but never less than zero, areas of high precipitation in the 275 

mean are also often areas of high precipitation variability. We thus suspect that regions 276 

with a wet precipitation bias also feature excessive variance and a high RMSE. Assuming 277 

an exact relation between mean and variance, Eq. (3) can be transformed into 278 

𝑅𝑀𝑆𝐸 𝑝, 𝑜 = 𝑐 ∙ 𝑝 − 𝑜 = 𝑐 ∙ 𝑏(𝑝)                      (4) 279 

where c is a constant relating standard deviation of precipitation to its mean. To what 280 

extent this simple relation holds is examined in Fig. 2b, where, for each model, the 281 

RMSE of precipitation is scattered against the bias in the Niño 3.4 region. The intermodel 282 

correlation is 0.61, which is significant above the 99% level. As in Fig. 2a, there is an 283 

offset in the relation, which indicates the influence of the ACC. 284 

3.2. Empirical link between ACC and bias 285 

We have seen that, for the Niño 3.4 region, there is a moderately strong relation be-286 

tween mean state bias and RMSE of precipitation in regions where ACC is high. A more 287 

interesting question is whether there also is a relation between mean state and ACC. It 288 

can be seen from the definition of ACC that any linear transformation of the operands (i.e. 289 

observed and predicted time series) will leave its value unchanged. Intuitively one might 290 

expect severe biases (such as an ITCZ location bias) to affect ACC but such mean state 291 

biases do not figure into the mathematical definition of ACC (excepting the pathological 292 

case in which at least one of the time series is constant). Thus, based on the definition of 293 

ACC, there is no a-priori reason to expect that it should be influenced by errors in the 294 
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mean state or variance. We can nevertheless examine whether there is empirical evidence 295 

for a link. To get a global view we show (seasonally unstratified) ACC and the annual 296 

mean bias of precipitation for the AMIP multi-model mean (Fig. 3a). There is a tendency 297 

for high ACC to be accompanied by small biases, particularly in the central and eastern 298 

equatorial Pacific and northern Indian Ocean. Other areas, like the equatorial Atlantic, 299 

tend to show the opposite behavior, i.e. high ACC accompanied by strong biases. The 300 

pattern correlation is 0.15, which is not significant at the 5% level. Surface zonal wind 301 

(Fig. 3b) also shows a variety of patterns, with high ACC in the eastern Indian Ocean al-302 

most collocated with the maximum easterly wind bias, while in the western equatorial 303 

Atlantic high ACC exists where the bias is very small. The pattern correlation between 304 

the two fields is -0.20, which is significant at the 5% level. 305 

We further examine the relationship between bias and ACC in terms of intermodel 306 

spread. The Niño 3.4 June-July-August (JJA) precipitation is overestimated in most 307 

AMIP models and this anticorrelates with ACC at -0.68 (Fig. 4b). For precipitation over 308 

the equatorial Atlantic, on the other hand, the intermodel correlation is weakly positive, 309 

indicating a slight tendency for models with larger biases to have higher ACC (Fig. 4a, c). 310 

No significant relation exists for the equatorial Indian Ocean. Precipitation indices over 311 

monsoon regions (West Africa, South America, and India) show a similarly weak inter-312 

model correlation (Fig. 4d-f). Furthermore, the general lack of useful prediction skill is 313 

striking. If the threshold is set at 0.5, a rather generous value, useful skill is only reached 314 

by one model each for West Africa and South America, while no model shows useful 315 

skill over India. As shown by previous studies, the absence of coupled feedbacks in 316 

AMIP experiments reduces the models’ ability to reproduce precipitation patterns (Kang 317 
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et al. 2004; Lee et al. 2010; DelSole and Shukla 2012) and thus skill may be somewhat 318 

higher in a seasonal prediction setting. Nevertheless, the generally low skill in these state-319 

of-the-art models underscores the challenge of predicting rainfall in the monsoon regions, 320 

consistent with the study by Wang et al. (2009). As stated in their study, land surface ini-321 

tialization may be one way of improving skill for those regions. 322 

A few examples of the ACC-bias relation for surface zonal wind are given in Fig. 5. 323 

For the western equatorial Atlantic (40-20ºW, 2ºS-2ºN; WEA hereafter) most models 324 

show the familiar westerly bias in March-April-May (MAM; Fig. 5a) as documented in 325 

Richter et al. (2008) and Richter et al. (2014a). Despite noticeable biases many models 326 

achieve an ACC of 0.8 or higher. A systematic relation between bias and ACC is not dis-327 

cernible. For the Niño 4 region (160ºE-150ºW, 5ºS-5ºN) in MAM, models are about 328 

evenly split into groups of westerly and easterly biases (Fig. 5b). There is a weak tenden-329 

cy for models with stronger easterly mean wind to have higher ACC (as indicated by the 330 

intermodel correlation of -0.44), even when the mean wind is more easterly than ob-331 

served. The JJA surface zonal winds over the equatorial Indian Ocean (50-95ºE, 5ºS-5ºN) 332 

are too easterly in most models (Fig. 5c) and this is moderately correlated with a decrease 333 

in ACC (intermodel correlation 0.48). Overall, both precipitation and surface zonal wind 334 

tend to have higher ACC in those models with smaller biases but this is true only in some 335 

regions of the global tropics and many counter examples exist, most notably the equatori-336 

al Atlantic. 337 

The tropical Pacific is known to have worldwide teleconnections (e.g. Horel and 338 

Wallace 1981) and thus one might expect to find that tropical Pacific precipitation biases 339 

adversely affect skill in other regions of the world. We examine this by repeating the 340 
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analysis in Figs. 4 and 5 but with precipitation averaged over the Niño 3.4 region on the 341 

x-axis (not shown). Of the six regions shown in Fig. 4, only three show significant inter-342 

model correlations. Apart from the tropical Pacific (see Fig. 4b) these are the tropical In-343 

dian Ocean and the Indian monsoon index (inter model correlations -0.42 and -0.37, re-344 

spectively). For the latter, individual ACCs are low (see Fig. 4f), so that the tropical Indi-345 

an Ocean relation appears to be the most interesting. According to this relation, models 346 

with pronounced positive precipitation bias in the Niño 3.4 region during boreal fall tend 347 

to have very low ACC for precipitation over the tropical Indian Ocean. Relating the sur-348 

face wind ACCs shown in Fig. 5 to mean precipitation in the Niño 3.4 region does not 349 

produce any significant correlations. A more detailed investigation into the remote impact 350 

of tropical Pacific biases, particularly for the Indian Ocean, might produce interesting re-351 

sults but is out of scope for the present study. 352 

4. Comparison of AMIP, amip4K, and amipFuture 353 

In this section we examine multi-model ensemble means of three experiments in the 354 

CMIP5 archive (see Table 1 for a list of ensemble members). In amip4K, the prescribed 355 

SSTs are uniformly warmed by 4 K, relative to AMIP (Fig. 6b). This leads to a noticeable 356 

precipitation increase over the tropical Pacific and a more moderate increase over the 357 

tropical Atlantic and Indian Oceans. In amipFuture a typical global warming pattern is 358 

added to the AMIP SST, with enhanced warming in the deep tropics that is about 1 K 359 

warmer than in amip4K. Precipitation appears to respond in a non-linear way as values 360 

over the equatorial regions increase markedly compared to amip4K. Perhaps the most 361 

striking difference is seen over the eastern equatorial Pacific, where precipitation above 3 362 

mm/day extends much farther east than in either AMIP or amip4K. The non-linear re-363 
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sponse in amipFuture is consistent with the result of previous studies that demonstrate the 364 

importance of the equatorial warming enhancement to rainfall patterns (Xie et al. 2010; 365 

Sobel and Camargo 2012; Huang et al. 2013). 366 

4.1. Impact of SST warming on skill in the tropical Pacific 367 

The ACC of Niño 4 surface zonal wind is almost unchanged in amip4K and amip-368 

Future (Fig. 7a), despite pronounced precipitation changes (Fig. 6). In all experiments 369 

ACC is quite high and generally ranges between 0.8 and 0.9. This illustrates the strong 370 

influence of SSTs on surface winds in the tropical Pacific (consistent with Lindzen and 371 

Nigam 1987, and Zebiak and Cane 1987), an important part of the ENSO feedback loop 372 

(Bjerknes 1969; Neelin et al. 1998). ACC is even higher for precipitation in the Niño 3.4 373 

region (Fig. 7b) with values up to 0.98 in AMIP and amip4K. Here amipFuture shows a 374 

noticeable decrease relative to the other two experiments, with ACC reduced by as much 375 

as 0.1 in April and May though this decrease is not statistically significant at the 95% 376 

level, based on Fisher’s z transformation. 377 

The higher SSTs in amip4K and amipFuture give rise to more intense precipitation 378 

over the tropics, which should increase variability and thus RMSE (see section 3). More-379 

over, since convection enhances the surface wind response to SST anomalies (Zebiak 380 

1986; Richter et al. 2016) we also expect to see an increase in surface wind variability 381 

and, potentially, its RMSE. There is an opposing effect from the increase of atmospheric 382 

moisture and the stabilization of the atmospheric column (Held and Soden 2006). In the 383 

experiments under consideration, however, the variance of surface zonal wind does in-384 

crease in the tropics (not shown). Consequently, the RMSE of surface zonal wind in the 385 

Niño 4 region (Fig. 7c) shows a more obvious skill deterioration as was the case for ACC, 386 

particularly for amipFuture. Nevertheless, the increase of RMSE relative to AMIP does 387 
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not exceed 25% and none of the differences are significant at the 95% level, according to 388 

an F-test. For Niño 3.4 precipitation, the RMSE is more seriously affected (Fig. 7d), with 389 

values increasing by about a factor of 3 in amipFuture (statistically significant for all 390 

months). In amip4K the increase is only 10-20% and is only statistically significant in 391 

December. 392 

The deterioration of precipitation RMSE in amipFuture points to a nonlinear re-393 

sponse of precipitation and its variability in the equatorial Pacific region. Such nonlinear-394 

ity is considered to play an important part in the skewness of ENSO (e.g. An and Jin 395 

2004; Frauen and Dommenget 2010) and in the changes of ENSO variability under glob-396 

al warming (Power et al. 2013; Zheng et al. 2016). It is remarkable, however, that ACC is 397 

not much affected by this nonlinearity.  398 

The area with the strongest decline in ACC is the central equatorial Pacific in MAM 399 

(not shown). Analysis of this area (160-120ºW, 5ºS-5ºN) reveals that observations, amip 400 

and amip4K all feature a highly non-linear relationship between precipitation and under-401 

lying SST (not shown): as SSTs exceed 28 ºC (32 ºC in the case of amip4K) the precipi-402 

tation response becomes much more pronounced. In amipFuture, on the other hand, the 403 

relation is approximately linear, which leads to its decreased ACC. 404 

4.2. Impact of SST warming on skill in the tropical Atlantic 405 

In the WEA, the ACC of surface zonal wind anomalies is above 0.7 from April 406 

through June (Fig. 8a), with substantially lower values in other months. For the most part, 407 

ACC is very similar across experiments though AMIP tends to have higher values in bo-408 

real fall. These differences, however, are not statistically significant and, furthermore, 409 

skill in all three experiments is well below the usefulness level. 410 
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The ACC of precipitation over the equatorial Atlantic (50ºW-10ºE, 5ºS-5ºN; EQATL 411 

hereafter) exceeds 0.8 from May through July in all three experiments (Fig. 8b), which 412 

indicates a robust response to the pronounced SST anomalies that occur in that season 413 

(e.g. Carton and Huang 1994; Xie and Carton 1994; Richter et al. 2014a). In other 414 

months, ACC in the warming experiments both rises above and drops below the AMIP 415 

reference so that, on the whole, SST warming appears to have no systematic effect on the 416 

ACC of equatorial Atlantic precipitation. 417 

RMSE of surface zonal wind over the western equatorial Atlantic tends to improve in 418 

the warming experiments from March through June (Fig. 8c), while in other months dif-419 

ferences tend to be very small. None of these changes are statistically significant.  420 

The RMSE of precipitation, on the other hand, increases significantly in the warming 421 

experiments, as expected from the increased mean (Fig. 6) and variability (not shown). 422 

This is particularly evident in amipFuture, where differences are statistically significant 423 

in several months. 424 

5. Sensitivity tests with SINTEX-F 425 

We first discuss the annual mean climatology of the SINTEX-F experiments. Biases 426 

generally have significant seasonal variability, particularly in the tropical Atlantic (Rich-427 

ter and Xie 2008). Nevertheless, the annual mean biases already feature many of the sali-428 

ent model errors. In the interest of brevity, we therefore discuss the annual mean biases 429 

only. 430 

In experiment Atl_bias the tropical Atlantic SST of the SINTEX-F AMIP-like CTRL 431 

experiment is replaced with the biased climatology of the free running control simulation. 432 

This leads to annual mean SST in the eastern tropical Atlantic being up to 3 K warmer 433 
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than in either CTRL or the observations (Fig. 9c). The Atlantic ITCZ responds by broad-434 

ening meridionally, as can be seen from the increased precipitation south of the equator 435 

in Fig. 9c. Precipitation also changes in some other regions, with increase in the equatori-436 

al Indian Ocean and decrease in the South Pacific Convergence Zone (SPCZ). 437 

In experiment Pac_bias (Fig. 9d) the equatorial Pacific SSTs are warmer than ob-438 

served, particularly in the eastern basin. The SPCZ intensifies, extends further eastward, 439 

and becomes more zonally oriented, while the north-equatorial ITCZ weakens. This leads 440 

to a pronounced double ITCZ structure, a common bias in GCMs (de Szoeke and Xie 441 

2008; Li and Xie 2014). Precipitation in other basins is not affected much. 442 

Tropical precipitation is overestimated in all three experiments, a common problem 443 

in GCMs (Richter et al. 2016) that is most apparent over the Pacific warm pool. Note that 444 

for the latter region the precipitation differences across the experiments are relatively 445 

small compared to their difference from observations. 446 

Surface zonal wind is biased westerly over the central and eastern equatorial Pacific 447 

in CTRL (Fig. 9b). A westerly bias is also seen over the equatorial Atlantic, which is typ-448 

ical of most GCMs (Richter et al. 2008). When SST biases are prescribed in the tropical 449 

Atlantic the westerly bias intensifies (Fig. 9c). This demonstrates the amplification of 450 

westerly wind biases in AGCMs by SST biases, as shown for CMIP3 (Richter et al. 451 

2008) and CMIP5 (Richter et al. 2014a) models. In Pac_bias the westerly wind bias over 452 

the equatorial Pacific deteriorates noticeably (Fig. 9d). This is consistent with the surface 453 

winds responding to the reduced zonal SST gradient. 454 

5.1. Impact of SST biases on skill in the Tropical Pacific 455 

The ACC of surface zonal wind in the Niño 4 region (Fig. 10a) shows that the skill 456 

of CTRL is comparable to that of the AMIP ensemble (Fig. 7a). Overall, skill scores in 457 
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the equatorial Pacific are relatively robust to the presence of SST biases (Fig. 10). The 458 

ACC of Niño 4 surface zonal wind is essentially the same in all three experiments, with 459 

differences less than 0.05 that are not statistically significant at the 95% level (Fig. 10a). 460 

The ACC of Niño 3.4 precipitation (Fig. 10b) decreases significantly in January, May, 461 

and August but never by more than 0.1. 462 

A horizontal map of ACC for precipitation in MAM is presented in Fig. 11. CTRL 463 

shows maximum ACC in the eastern equatorial Pacific. The difference plot (Fig. 11b) 464 

reveals that the Niño 3.4 region chosen for Fig. 10 includes areas of both significant in-465 

crease and decrease in ACC. The most evident decrease is in the eastern tropical Pacific, 466 

where CTRL had high skill (Fig. 11a). Significantly increased ACC is found in the west-467 

ern equatorial Pacific, and in the far eastern Pacific centered at 10ºS and 10ºN. The 468 

changes in ACC very roughly correspond to those in mean precipitation in that both tend 469 

to decrease on the equator and increase away from it (Fig. 11b).  470 

We examine the region of the largest ACC decrease (140-105ºW, 5ºS-5ºN; EEP 471 

hereafter) by scattering simulated vs. observed MAM precipitation (Fig. 12a). It is evi-472 

dent that both mean and variability of precipitation are reduced in Pac_bias (see also Fig. 473 

11b). The two points with the highest precipitation in the GPCP observations correspond 474 

to the years 1983 and 1998, both of which followed exceptionally strong El Niño events. 475 

CTRL reproduces these high precipitation events fairly well while Pac_bias does not, 476 

which contributes to the drop of ACC from 0.95 in CTRL to 0.55 in Pac_bias. 477 

Convection in the tropics is thought to be sensitive to the absolute value of the under-478 

lying SST (Graham and Barnett 1987) though there may be no critical threshold (Zhang 479 

1993). We examine to what extent background SST changes in the EEP contribute to the 480 
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drop in ACC by scattering precipitation versus SST, both averaged over the EEP (Fig. 481 

12b). While the EEP has a warm bias in the annual mean (Fig. 9d), in MAM it is cooler 482 

than observed by about 0.3 K (Fig. 12b). Convection in the tropics can be sensitive to 483 

small SST changes, but closer inspection of Fig. 12b shows that, even for the same SST 484 

values, Pac_bias has much lower precipitation than CTRL or the observations. Further-485 

more, in Pac_bias, precipitation for some SST values below 28ºC turns out to be higher 486 

than that for SST above 28ºC. Thus the local SST change does not seem sufficient to ex-487 

plain the drastic reduction of mean precipitation in the region (Fig. 11b). 488 

A meridional section averaged from 140-105ºW (Fig. 13) reveals an SST decrease of 489 

almost 1 K just north of the equator, which is partially offset by an increase south of the 490 

equator and therefore not apparent in the area average. Additionally, there is a warm bias 491 

of almost 2 K further poleward in both hemispheres for Pac_bias (Fig. 13). This is ac-492 

companied by anomalous subsidence and lower tropospheric divergence over the equato-493 

rial region and anomalous rising motion off the equator in both hemispheres. The analysis 494 

suggests that SST biases both in the EEP and in the subtropics create an environment in 495 

the EEP that is less conducive to convection. This makes it more susceptible to factors 496 

other than the underlying SST. 497 

The RMSE of surface zonal wind in the Niño 4 region is almost unchanged in 498 

Pac_bias (Fig. 10c), with no significant differences in any month. The RMSE of precipi-499 

tation in the Niño 3.4 region (Fig. 10d) significantly decreases in April and October. This 500 

improvement in RMSE is explained by the decreased variability in Pac_bias (not shown, 501 

but inferable from the precipitation decrease in Fig. 11b; see Eq. 3). There also is a pro-502 

nounced and significant increase of RMSE in December. 503 
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It is interesting to note that the RMSE of precipitation consistently increases in the 504 

Atl_bias experiment (Fig. 10d) though this is only statistically significant in January and 505 

August. The result suggests remote influences on the Pacific from the severe tropical At-506 

lantic SST bias. 507 

5.2. Impact of SST biases on skill in the Tropical Atlantic 508 

CTRL reproduces the surface zonal wind anomalies in the WEA with an ACC of ap-509 

proximately 0.8 from April through June (Fig. 14a), comparable to the performance of 510 

the AMIP multi-model ensemble (Fig. 8). Atl_bias features slightly lower ACC in those 511 

months but also higher ACC in other months. None of the differences are statistically 512 

significant. The ACC of precipitation for the EQATL index in CTRL is highest from 513 

May through July (Fig. 14b). The ACC in Atl_bias reduces in most months (significantly 514 

so in April, May and December). An increase of ACC occurs in August and September 515 

but is not statistically significant. 516 

RMSE deteriorates more markedly than ACC (Fig. 14cd), with significant differ-517 

ences in many months. This is a consequence of the warm SST bias in Atl_bias, which 518 

increases both mean (Fig. 15) and variability (not shown) of precipitation, exacerbating 519 

the biases in CTRL. Excessive variability in precipitation directly leads to a high RMSE 520 

(Eq. 3) and, through its impact on wind variability, indirectly contributes to the high 521 

RMSE of that quantity. 522 

The horizontal map of climatological precipitation in CTRL, averaged over April 523 

through June (AMJ; Fig. 15a), shows maximum precipitation off the West African coast 524 

at about 5ºN. ACC, on the other hand, is highest over the central equatorial Atlantic. In 525 

response to the warm bias in Atl_bias, the ITCZ shifts southward, resulting in precipita-526 

tion decrease north of the equator and increase south of it (Fig. 15b). This behavior is 527 
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roughly mirrored by the ACC, similarly to the Pacific case. Only some areas feature sta-528 

tistically significant changes. For the ACC of surface zonal wind, the horizontal map 529 

shows the highest skill in the western equatorial Atlantic off the coast of Northeast Brazil 530 

(Fig 15c). In Atl_bias, this area only shows a slight decrease (Fig. 15d and Fig. 14a) but 531 

further east the impact is more visible, though still not statistically significant.   532 

We examine how the SST biases affect the precipitation response to equatorial warm 533 

events by compositing SST and precipitation anomalies in July for Atlantic Niño years 534 

(1984, 1988, 1991, 1995, 1996, 1999, 2008) and plot horizontal maps for the observa-535 

tions and the two experiments (Fig. 16). The observations show wet precipitation anoma-536 

lies between the equator and 10ºN extending over northeast Brazil to the west and Africa 537 

to the east (Fig. 16a). The most pronounced rain anomalies occur off Northwest Africa 538 

and over the central equatorial Atlantic, while maximum SST anomalies occur in the 539 

eastern equatorial Atlantic (ATL3 region). Large areas of warm SST anomalies in the 540 

tropical southeast Atlantic are not accompanied by increased precipitation. CTRL, which 541 

is forced with essentially the same SST field, reproduces the precipitation response fairly 542 

well although precipitation anomalies are too intense (by a factor 3 approximately) and 543 

too narrow in the meridional direction (Fig. 16b). Precipitation anomalies are unrealistic 544 

in Atl_bias because, in addition to being excessive, they are shifted southeastward (Fig. 545 

17c). To a first approximation, the precipitation response in Atl_bias just follows the un-546 

derlying SST anomaly pattern, which is not the case in the observations and CTRL. Pat-547 

tern correlation with observations for the area 50ºW-10ºE, 10ºS-10ºN yields 0.72 and -548 

0.02 for CTRL and Atl_bias, respectively, thus confirming the visual impression. The 549 

drastic deterioration of the precipitation response in Atl_bias thus appears to be due to the 550 
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unrealistic sensitivity to the underlying SST anomalies. This in turn, directly relates to the 551 

mean state SST bias, which is most severe in the southeastern tropical Atlantic (Fig. 9c) 552 

and thus creates an environment that is unrealistically conducive to deep convection. 553 

The increased sensitivity to SST anomalies in Atl_bias, however, can also lead to in-554 

creased skill by allowing a robust precipitation response to emerge that would otherwise 555 

be drowned out by atmospheric internal noise and remote influences. This is suggested by 556 

the increased ACC of precipitation over the tropical southeast Atlantic (Fig. 15b). We 557 

quantify this by calculating the signal-to-noise ratio (SNR) for the tropical Atlantic. An 558 

easy way to estimate SNR is to calculate ensemble mean variance divided by intra-559 

ensemble variance. The result for AMJ confirms that SNR is indeed increased over the 560 

southeastern tropical Atlantic (shading in Fig. 17). This roughly corresponds with the 561 

SST bias during the season (contours in Fig. 17), though this relation is certainly compli-562 

cated by other factors. Compositing events with anomalously high precipitation over the 563 

southeastern tropical Atlantic (10ºW-10ºE, 10ºS-0) confirms higher skill in Atl_bias for 564 

this particular region (not shown). 565 

6. Summary 566 

6.1. Summary 567 

We have investigated the link between GCM biases and prediction skill in the tropics 568 

through theoretical considerations and AMIP-style sensitivity tests. Our metrics for mod-569 

el skill have been RMSE and ACC, and we have applied these to the variability of sur-570 

face winds and precipitation. 571 

Taking the well-known relation among RMSE, standard deviation and ACC as our 572 

starting point (Eq. 2), we have shown that, if ACC is close to 1, there is a simple relation 573 
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between RMSE and the observed and simulated standard deviations that holds for any 574 

field. Thus, RMSE becomes a simple function of the simulated standard deviations. For 575 

areas in which models have consistently high skill, such as the equatorial Pacific, this re-576 

lation clearly emerges in a multi-model scatter plot of AMIP models (Fig. 2a). For a posi-577 

tive definite field like precipitation, there is a relatively close relation between mean and 578 

variability. This establishes a link between the mean and RMSE of precipitation or, in 579 

other words, bias and skill. A multi-model scatter plot suggests that this relation holds 580 

reasonably well for the equatorial Pacific. 581 

By definition, ACC is not explicitly related to the mean state and, consistently, mul-582 

ti-model plots scattering the ACC against bias of precipitation do not reveal a systematic 583 

link, except for the equatorial Pacific (Figs. 3, 4b). For the three monsoon regions exam-584 

ined, the scatter plots also suggest a general absence of useful prediction skill, although 585 

the lack of coupled feedbacks in AMIP may contribute to this. Equatorial surface zonal 586 

winds do not show a strong relation between mean and ACC either, though there is some 587 

suggestion of a link for the equatorial Indian Ocean (Fig. 5c). Biases over the tropical Pa-588 

cific appear to have some negative remote impact on skill over the Indian Ocean but 589 

more analysis will be needed to substantiate this relation. 590 

Multi-model AMIP-style simulations with prescribed warming patterns over the 591 

global oceans indicate that ACC and RMSE are rather insensitive to SST changes on the 592 

order of 4 K. Only for precipitation the RMSE deteriorates noticeably due to the exces-593 

sive variability that results from the warming. 594 

In two sensitivity experiments with the SINTEX-F GCM, SST biases from a free-595 

running control simulation were prescribed over either the tropical Atlantic or the tropical 596 
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Pacific, while leaving the anomalies as in the control simulation. The ACC of surface 597 

zonal wind is mostly unaffected in some key equatorial regions. Precipitation shows 598 

some more obvious decrease, particularly over the equatorial Atlantic. The RMSE of pre-599 

cipitation and surface zonal wind deteriorates noticeably over the equatorial Atlantic be-600 

cause the variability of these fields increases. Conversely, RMSE is not affected signifi-601 

cantly over the equatorial Pacific, where mean precipitation and its variability tend to de-602 

crease. 603 

Composite analysis of equatorial Atlantic warm events (Atlantic Niños) reveals that 604 

the warm SST biases in the eastern tropical Atlantic are associated with excessive sensi-605 

tivity of precipitation anomalies to the underlying SST. This suggests that the unrealisti-606 

cally warm SST produce an environment conducive to deep convection that reacts very 607 

sensitively to warm SST anomalies, even when observations show no such sensitivity. 608 

While the excessive sensitivity to local SST anomalies often deteriorates the skill of 609 

precipitation, it can also increase it under certain circumstances. This appears to be the 610 

case for the southeastern tropical Atlantic where the signal-to-noise ratio is increased 611 

over warm SST biases. The spatial pattern of ACC (15ab) supports this notion because it 612 

shows increased skill in the southeastern tropical Atlantic. In the eastern equatorial Pacif-613 

ic, on the other hand, cold SST biases are accompanied by a reduction in mean precipita-614 

tion during MAM, and ACC decreases (Fig. 11). Recent studies indicate that the signal-615 

to-noise ratio is underestimated in climate models (e.g. Eade et al. 2014; Scaife et al. 616 

2014) and thus warm SST biases may be able to compensate for this deficiency in some 617 

scenarios. 618 
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6.2. Discussion 619 

Our results indicate that there is generally no straightforward linear correspondence 620 

between mean state biases in SST, precipitation and surface wind on the one hand, and 621 

the ability of a model to reproduce surface wind and precipitation anomalies on the other. 622 

Particularly the skill for surface wind seems largely unaffected by the mean state SST. 623 

For precipitation, there is some indication that cool SST biases reduce the signal-to-noise 624 

ratio and skill. This relation, however, can also work in the opposite direction, i.e. skill 625 

increases when the mean SSTs are positively biased. To summarize this, our results indi-626 

cate that reducing the amplitude of SST biases does not necessarily lead to increased skill. 627 

That SST biases affect precipitation more than surface wind can be explained by the 628 

non-linearity of precipitation. Changes in the SST distribution have a strong influence on 629 

whether a region permits or does not permit deep convection. This was evident in the Pa-630 

cific bias experiment, where local cold biases and off-equatorial warm biases conspired 631 

to effectively suppress the precipitation response to warm SST anomalies in eastern equa-632 

torial Pacific. Conversely, the warm SST bias in the southeast Atlantic produced an envi-633 

ronment that was unrealistically conducive to convection, leading precipitation to re-634 

spond to SST anomalies where it would not in nature. 635 

Our sensitivity tests assess the impact of mean state SST biases only and thus assume 636 

that variability patterns remain unaffected. This will generally not be the case for coupled 637 

seasonal predictions because mean state wind biases will change, among others, the simu-638 

lated temperature stratification of the oceans and therefore the areas of strong air-sea 639 

coupling. Thus SST variability patterns and their timing may change significantly in cou-640 

pled prediction experiments and, for the case of free running coupled simulations, such 641 

changes are well documented (e.g. Richter et al. 2014a for the tropical Atlantic, and Bel-642 
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lenger et al. 2013 for the tropical Pacific). Therefore, the impact of model biases on cou-643 

pled prediction runs cannot be addressed here. 644 

We stress that our results do not suggest that reducing surface wind and precipitation 645 

biases is futile. Rather we have shown that, in the narrow context of AMIP-like experi-646 

ments, one cannot necessarily expect increased skill from improving mean state biases. 647 
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Captions 819 

 820 

Table 1   AMIP models used in this study. The “symbol” column shows the symbol 821 
used in the multi-model scatter plots. The “ensemble” column shows which models were 822 
used for the ensemble mean. The SINTEX-F model (first row) is not part of AMIP but 823 
was run in an AMIP-like configuration. 824 

 825 
Fig. 1   Anomaly correlation coefficient (ACC) for SST in the ATL3 region as func-826 

tion of lead time for seasonal predictions from the CHFP model intercomparison (solid 827 
lines) and the SINTEX-F prediction system (dashed green line). The skill of the persis-828 
tence reference prediction is indicated by the black solid line. All predictions were initial-829 
ized on 1 February so that lead time 1 is centered on the middle of February, 2 on the 830 
middle of March etc. For some models, not all lead times were available. 831 

 832 
Fig. 2   AMIP multi-model scatter plots of quantities calculated from JJA mean pre-833 

cipitation in the Niño 3.4 region. (a) Absolute difference of predicted and observed 834 
standard deviation versus root mean square error (RMSE). (b) Absolute difference of 835 
predicted and observed mean versus RMSE. Each model is marked by a letter, with “a” 836 
in the origin denoting observations. The model names can be looked up in Table 1. All 837 
quantities are calculated for the period 1979-2008. 838 

 839 
Fig. 3   ACC (shading) and bias (contour lines; interval 0.5) of the ensemble average 840 

of 11 AMIP models for (a) precipitation (mm/day), and (b) surface zonal wind (m/s). The 841 
reference data are GPCP for precipitation and ERA-Interim for surface zonal wind. 842 
Dashed lines indicate negative values. The zero contour line has been omitted. The ACC 843 
is calculated for the entire time series (1979-2008; no seasonal stratification). 844 

 845 
Fig. 4   AMIP multi-model scatter plot of mean precipitation versus its ACC for sev-846 

eral regions and seasons: (a) equatorial Atlantic (50°W-10°E, 5°S-5°N) in MAM, (b) Ni-847 
ño 3.4 (170-120°W, 5°S-5°N) in JJA, (c) equatorial Indian Ocean (50-95°E, 5°S-5°N) in 848 
SON, (d) Sahel (land points in 20°W-40°E, 5-15°N) in JJA, (e) South American monsoon 849 
region (land points in 90-30°W, 25-5°S) in JJA, and (f) Indian monsoon region (land 850 
points in 65-95°E, 5-25°N) in JJA. Each letter corresponds to one model, with “a” denot-851 
ing observations. 852 

 853 
Fig. 5   AMIP multi-model scatter plot of surface zonal wind ACC and mean for the 854 

following regions and seasons: (a) western equatorial Atlantic (40-20°W, 2°S-2°N) in 855 
MAM, (b) Niño 4 (160°E-150°W, 5°S-5°N) in MAM, and (c) equatorial Indian Ocean 856 
(50-95°E, 5°S-5°N). Each letter corresponds to one model, with “a” denoting observa-857 
tions. 858 

 859 
Fig. 6   Climatological annual mean of SST (shading; °C) and precipitation (contour 860 

lines; interval 3 mm/day) for an 11-member model ensemble in three experiments: (a) 861 
AMIP, (b) amip4K, and (c) amipFuture. 862 
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 863 
Fig. 7   Skill metrics in the equatorial Pacific for three AMIP-style experiments 864 

(amip, amip4K, and amipFuture), stratified by month, for the following quantities, and 865 
regions: (a) ACC of Niño 4 surface zonal winds, (b) ACC of Niño 3.4 precipitation, (c) 866 
RMSE of Niño 4 surface zonal winds, and (d) RMSE of Niño 3.4 precipitation. The ref-867 
erence data is ERA-Interim for winds and GPCP for precipitation. The dots indicate val-868 
ues that are significantly different from experiment AMIP at the 95% confidence level 869 
based on a Fisher’s z transformation for ACC and an F-test for RMSE. 870 

 871 
Fig. 8   As in Fig. 7, but for WEA surface zonal winds and equatorial Atlantic pre-872 

cipitation (50°W-10°E, 5°S-5°N). 873 
 874 
Fig. 9   Climatological annual mean of SST (shading; °C), precipitation (contour 875 

lines; contour interval 2 mm/day) and surface winds (vectors; reference 5 m/s) in obser-876 
vations and the three AMIP-style experiments conducted with SINTEX-F. (a) Total fields 877 
for OISST (SST), GPCP (precipitation) and ERA-Interim (surface winds), (b) biases in 878 
CTRL, (c) biases in Atl_bias, and (d) biases in Pac_bias. The biases in panels b-d are 879 
with reference to the observations in panel a. The reference period is 1982-2014. 880 

 881 
Fig. 10   As in Fig. 7 but for the following SINTEX-F experiments: CTRL (green 882 

line), Atl_bias (blue line), and Pac_bias (orange line). Skill scores are calculated from the 883 
9-ensemble mean of each experiment for the period 1982-2014. 884 

 885 
Fig. 11   (a) ACC (shading) and climatological mean (contours; interval 3 mm/day) 886 

of MAM precipitation in CTRL. (b) The difference between Pac_bias and CTRL for 887 
ACC (shading) and climatological mean precipitation (contours; interval 2 mm/day; neg-888 
ative contours dashed). In panel b, values significant at the 95% level are stippled. 889 

 890 
Fig. 12   MAM total precipitation (mm/day) averaged over the eastern equatorial Pa-891 

cific (140-105°W, 5°S-5°N) scattered against (a) GPCP observations averaged in the 892 
same way, and (b) underlying SST (°C) averaged in the same way. Green indicates ob-893 
servations, blue CTRL, and orange Pac_bias. Regression lines are calculated for individ-894 
ual data sets and plotted in the corresponding colors. The correlation coefficient (r) and 895 
slope (m) are shown in the upper left. 896 

 897 
Fig. 13   Difference between Pac_bias and CTRL. The upper panel shows a latitude-898 

pressure section of geopotential height (shading; m), and meridional and vertical velocity 899 
(arrows; units: m/s for meridional velocity and hPa/hr (multiplied by -10) for pressure 900 
velocity; upward arrows indicate rising motion and vice versa), averaged over the eastern 901 
Pacific (140-105°W). The lower panel shows the SST difference averaged over the same 902 
longitude range. 903 

 904 
Fig. 14   As in Fig. 10 but for the WEA (panels a and c) and EQATL (panels b and 905 

d) indices. 906 
 907 
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Fig. 15   (a) ACC (shading) and climatological mean (contours; interval 3 mm/day) 908 
of MAM precipitation in CTRL. (b) The difference between Atl_bias and CTRL for ACC 909 
(shading) and climatological mean precipitation (contours; interval 2 mm/day; negative 910 
contours dashed). (c) and (d) As in (a) and (b) but for surface zonal wind. In (b) and (d), 911 
values significant at the 95% level are stippled. The precipitation contour lines are re-912 
peated in (c) and (d) to facilitate assessing their collocation with the ACC of surface zon-913 
al wind. 914 

 915 
Fig. 16   SST (shading; ºC) and precipitation anomalies (contours; mm/day) in July, 916 

composited on Atlantic Niño years (1984, 1988, 1991, 1995, 1996, 1999, 2008) for (a) 917 
GPCP observations, (b) CTRL, and (c) Atl_bias. The precipitation contour interval is 0.5 918 
mm/day in (a), and 1 mm/day in (b) and (c). The zero-contour line has been omitted. 919 

 920 
Fig. 17   April-May-June (AMJ) difference of Atl_bias and CTRL in terms of Sig-921 

nal-to-noise-ratio (SNR; shading), and SST (contours; ºC). SNR is estimated as the en-922 
semble mean variance divided by the inter-ensemble variance. The SST difference be-923 
tween the two experiments is essentially identical to the bias in Atl_bias because SSTs in 924 
CTRL are strongly restored toward observations. 925 
  926 
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A. Tables 927 

model horizontal grid # vertical levels symbol ensemble 

SINTEX-F T106 (1.1 º) 19 b  
ACCESS1-0 1.875º x 1.25º 38 c  
ACCESS1-3 1.875º x 1.25º 38 d  
bcc-csm1-1 T42 (2.8º) 26 e yes 
bcc-csm1-1-m T42 (2.8º) 26 f  
BNU-ESM T42 (2.8º) 26 g  
CanAM4 T63 (1.8º) 35 h yes 
CCSM4 1.25º x 0.9º 26 i yes 
CESM1-CAM5 1.25º x 0.9º 26 j  
CMCC-CM T159 (0.75º) 31 k  
CNRM-CM5 

 

T127 (1.5º) 31 l yes 
CSIRO-Mk3-6-0 T63 (1.9º) 18 m  
EC-EARTH T159 (1.25º) 62 n  
FGOALS-g2 2.8125º x 2.8125º 26 o  
FGOALS-s2 R42 (2.8º x 1.7º) 26 p  
GFDL-CM3 200 km (2º) 48 q  
GFDL-HIRAM-

C180 

C180 (0.5º) 32 r  
GFDL-HIRAM-

C360 

C360 (0.25º) 32 s  
GISS-E2-R 2º x 2.5º 29 t  
HadGEM2-A 1.875º x 1.25º 60 u yes 
inmcm4 2º x 1.5º 21 v  
IPSL-CM5A-LR 3.75º x 1.9º 39 w yes 
IPSL-CM5A-

MR 

1.25° x 2.5° 39 x  
IPSL-CM5B-LR 3.75º x 1.9º 39 y yes 
MIROC5 T85 (1.4º) 40 z yes 
MIROC-ESM T42 (2.8º) 80 0  
MPI-ESM-LR T63 (1.8º) 47 1 yes 
MPI-ESM-MR T63 (1.8º) 95 2 yes 
MRI-AGCM3-

2H 

T319 (60km) 64 3  
MRI-AGCM3-

2S 

T959 (20km) 64 4  
MRI-CGCM3 T159 (1.125º) 35 5 yes 
NorESM1-M 2.5º x 2.9º 26 6  

Table 1   AMIP models used in this study. The “symbol” column shows the symbol used in the multi-928 

model scatter plots. The “ensemble” column shows which models were used for the ensemble mean. The 929 

SINTEX-F model (first row) is not part of AMIP but was run in an AMIP-like configuration. 930 

931 
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B. Figures 932 

 933 

Fig. 1   Anomaly correlation coefficient (ACC) for SST in the ATL3 region as function of lead time 934 

for seasonal predictions from the CHFP model intercomparison (solid lines) and the SINTEX-F prediction 935 

system (dashed green line). The skill of the persistence reference prediction is indicated by the black solid 936 

line. All predictions were initialized on 1 February so that lead time 1 is centered on the middle of February, 937 

2 on the middle of March etc. For some models, not all lead times were available. 938 
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 939 

Fig. 2   AMIP multi-model scatter plots of quantities calculated from JJA mean precipitation in the 940 

Niño 3.4 region. (a) Absolute difference of predicted and observed standard deviation versus root mean 941 

square error (RMSE). (b) Absolute difference of predicted and observed mean versus RMSE. Each model 942 

is marked by a letter, with “a” in the origin denoting observations. The model names can be looked up in 943 

Table 1. All quantities are calculated for the period 1979-2008. 944 
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 945 

Fig. 3   ACC (shading) and bias (contour lines; interval 0.5) of the ensemble average of 11 AMIP 946 

models for (a) precipitation (mm/day), and (b) surface zonal wind (m/s). The reference data are GPCP for 947 

precipitation and ERA-Interim for surface zonal wind. Dashed lines indicate negative values. The zero con-948 

tour line has been omitted. The ACC is calculated for the entire time series (1979-2008; no seasonal strati-949 

fication). 950 
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 951 

Fig. 4   AMIP multi-model scatter plot of mean precipitation versus its ACC for several regions and 952 

seasons: (a) equatorial Atlantic (50°W-10°E, 5°S-5°N) in MAM, (b) Niño 3.4 (170-120°W, 5°S-5°N) in 953 

JJA, (c) equatorial Indian Ocean (50-95°E, 5°S-5°N) in SON, (d) Sahel (land points in 20°W-40°E, 5-954 

15°N) in JJA, (e) South American monsoon region (land points in 90-30°W, 25-5°S) in JJA, and (f) Indian 955 

monsoon region (land points in 65-95°E, 5-25°N) in JJA. Each letter corresponds to one model, with “a” 956 

denoting observations. 957 
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 958 

Fig. 5   AMIP multi-model scatter plot of surface zonal wind ACC and mean for the following regions 959 

and seasons: (a) western equatorial Atlantic (40-20°W, 2°S-2°N) in MAM, (b) Niño 4 (160°E-150°W, 5°S-960 

5°N) in MAM, and (c) equatorial Indian Ocean (50-95°E, 5°S-5°N). Each letter corresponds to one model, 961 

with “a” denoting observations. 962 
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 963 

Fig. 6   Climatological annual mean of SST (shading; °C) and precipitation (contour lines; interval 3 964 

mm/day) for an 11-member model ensemble in three experiments: (a) AMIP, (b) amip4K, and (c) amip-965 

Future. 966 
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 967 

Fig. 7   Skill metrics in the equatorial Pacific for three AMIP-style experiments (amip, amip4K, and 968 

amipFuture), stratified by month, for the following quantities, and regions: (a) ACC of Niño 4 surface zonal 969 

winds, (b) ACC of Niño 3.4 precipitation, (c) RMSE of Niño 4 surface zonal winds, and (d) RMSE of Niño 970 

3.4 precipitation. The reference data is ERA-Interim for winds and GPCP for precipitation. The dots indi-971 

cate values that are significantly different from experiment AMIP at the 95% confidence level based on a 972 

Fisher’s z transformation for ACC and an F-test for RMSE. 973 
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 974 

Fig. 8   As in Fig. 7, but for WEA surface zonal winds and equatorial Atlantic precipitation (50°W-975 

10°E, 5°S-5°N). 976 
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 977 

Fig. 9   Climatological annual mean of SST (shading; °C), precipitation (contour lines; contour inter-978 

val 2 mm/day) and surface winds (vectors; reference 5 m/s) in observations and the three AMIP-style ex-979 

periments conducted with SINTEX-F. (a) Total fields for OISST (SST), GPCP (precipitation) and ERA-980 

Interim (surface winds), (b) biases in CTRL, (c) biases in Atl_bias, and (d) biases in Pac_bias. The biases 981 

in panels b-d are with reference to the observations in panel a. The reference period is 1982-2014. 982 
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 983 

Fig. 10   As in Fig. 7 but for the following SINTEX-F experiments: CTRL (green line), Atl_bias (blue 984 

line), and Pac_bias (orange line). Skill scores are calculated from the 9-ensemble mean of each experiment 985 

for the period 1982-2014. 986 
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 987 

Fig. 11   (a) ACC (shading) and climatological mean (contours; interval 3 mm/day) of MAM precipi-988 

tation in CTRL. (b) The difference between Pac_bias and CTRL for ACC (shading) and climatological 989 

mean precipitation (contours; interval 2 mm/day; negative contours dashed). In panel b, values significant 990 

at the 95% level are stippled. 991 
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 992 

Fig. 12   MAM total precipitation (mm/day) averaged over the eastern equatorial Pacific (140-105°W, 993 

5°S-5°N) scattered against (a) GPCP observations averaged in the same way, and (b) underlying SST (°C) 994 

averaged in the same way. Green indicates observations, blue CTRL, and orange Pac_bias. Regression 995 

lines are calculated for individual data sets and plotted in the corresponding colors. The correlation coeffi-996 

cient (r) and slope (m) are shown in the upper left. 997 
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 998 

Fig. 13   Difference between Pac_bias and CTRL. The upper panel shows a latitude-pressure section 999 

of geopotential height (shading; m), and meridional and vertical velocity (arrows; units: m/s for meridional 1000 

velocity and hPa/hr (multiplied by -10) for pressure velocity; upward arrows indicate rising motion and 1001 

vice versa), averaged over the eastern Pacific (140-105°W). The lower panel shows the SST difference av-1002 

eraged over the same longitude range. 1003 

 1004 
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 1005 

Fig. 14   As in Fig. 10 but for the WEA (panels a and c) and EQATL (panels b and d) indices. 1006 
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 1007 

Fig. 15   (a) ACC (shading) and climatological mean (contours; interval 3 mm/day) of MAM precipi-1008 

tation in CTRL. (b) The difference between Atl_bias and CTRL for ACC (shading) and climatological 1009 

mean precipitation (contours; interval 2 mm/day; negative contours dashed). (c) and (d) As in (a) and (b) 1010 

but for surface zonal wind. In (b) and (d), values significant at the 95% level are stippled. The precipitation 1011 

contour lines are repeated in (c) and (d) to facilitate assessing their collocation with the ACC of surface 1012 

zonal wind.  1013 
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 1014 

Fig. 16   SST (shading; ºC) and precipitation anomalies (contours; mm/day) in July, composited on 1015 

Atlantic Niño years (1984, 1988, 1991, 1995, 1996, 1999, 2008) for (a) GPCP observations, (b) CTRL, and 1016 

(c) Atl_bias. The precipitation contour interval is 0.5 mm/day in (a), and 1 mm/day in (b) and (c). The zero-1017 

contour line has been omitted. 1018 
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 1019 

Fig. 17   April-May-June (AMJ) difference of Atl_bias and CTRL in terms of Signal-to-noise-ratio 1020 

(SNR; shading), and SST (contours; ºC). SNR is estimated as the ensemble mean variance divided by the 1021 

inter-ensemble variance. The SST difference between the two experiments is essentially identical to the 1022 

bias in Atl_bias because SSTs in CTRL are strongly restored toward observations. 1023 


