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ABSTRACT 

This chapter examines the performance of complex numerical climate models 

with respect to several aspects of mean tropical climate and its variability. While sub-

stantial progress has been made since the early days of climate modeling, many chal-

lenges remain. A problem common to most coupled ocean-atmosphere general circu-

lation models (GCMs) is the cold sea-surface temperature (SST) bias in the tropics. 

Despite this cold SST bias GCMs tend to produce too much precipitation over the 

tropical oceans, particularly south of the equator. Due to the close link between con-

vection and surface winds, the precipitation biases in GCMs are also accompanied by 

surface wind biases. Particularly on the equator this strongly affects the simulated 

ocean currents and vertical temperature stratification. Precipitation biases over land 

surfaces likely contribute to biases over the equatorial oceans through their influence 

on the Walker circulation. This influence is particularly strong for the Atlantic basin 

where GCMs typically underpredict precipitation over tropical South America and 

overpredict it over tropical Africa. Despite cold SST biases over much of the tropical 

oceans, warm SST biases dominate in the southeastern tropical Pacific and Atlantic. 

These warm biases appear to be due to a combination of surface wind biases (both on 

the equator and locally), excessive shortwave solar radiation due to insufficient low-

level cloud, and weak oceanic stratification reducing the cooling effect of upwelling. 

The failure to capture the equatorial thermocline (the sharp temperature gradient sepa-

rating the deep ocean from the warm surface layer) is also an important error source 

in coupled GCMs.  

Moving ahead will require further improvements in the representation of deep 

convection and its relation to surface winds in atmospheric GCMs. On the oceanic 

side, one major challenge is to better understand and simulate the processes responsi-
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ble for the equatorial thermocline. While increased model resolution can solve some 

of the problems of current GCMs it certainly cannot solve all of them. Additionally, 

long-term climate simulations will likely have to rely on convective and other pa-

rameterizations for a long time to come. Further improving these parameterizations 

must therefore remain one of the main targets for model development. Such efforts 

should increase model performance but, on the other hand, many issues will probably 

remain. Effort should therefore be spent on understanding how model biases affect 

seasonal forecasts and climate change projections, in order to maximize their utility as 

predictive tools. 
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1  Introduction 

The history of numerical modeling of geophysical fluids may have started with 

the pioneering work of Vilhelm Bjerknes (1900, 1904), who outlined the steps neces-

sary for numerical weather prediction based on the Navier-Stokes and thermodynam-

ical equations. These ideas were further developed by Richardson (1922), who wrote 

the exact form of the required equations and described ways of solving them numeri-

cally. Both researchers were, however, far ahead of their time in the sense that neither 

weather observations nor computational power where anywhere near the levels re-

quired to make useful predictions feasible. Efforts were reinvigorated in the late 

1940s with the advent of electronic computers. On the advice of mathematician John 

von Neumann, the U.S. funded research into numerical weather prediction (Edwards 

2000), and this eventually led to the first successful geophysical simulations with a 

2D barotropic model in 1950 (Charney et al. 1950). The first general circulation mod-

el (GCM) is usually attributed to Phillips (1956), who developed a global quasi-

geostrophic model with two vertical levels. Further efforts at the Geophysical Fluid 

Dynamics Laboratory in Princeton led to models based on the less simplified primi-

tive equations (Smagorinsky 1958). Benefitting from the experience gained in atmos-

pheric GCMs, numerical simulation of the ocean started in the 1960s (Sarkisyan 

1962; Bryan 1963; Bryan and Cox 1967, 1968; see also review by McWilliams 1996). 

The first coupled ocean-atmosphere models appeared in the late 1960s (Manabe and 

Bryan 1969) but still employed idealized land-ocean distributions. Global coupled 

ocean-atmosphere GCMs (CGCMs) were developed in the 1970s and 1980s (Manabe 

et al. 1975; Bryan et al. 1975; Washington et al. 1980; Gates et al. 1985). Starting 

from the late 1980s they were increasingly used to investigate issues such as global 

warming (e.g. Washington and Meehl 1989; Manabe et al. 1990) and interannual cli-
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mate variability associated with the El Niño/Southern Oscillation (ENSO) phenome-

non (e.g. Latif et al. 1988). The coupling of oceanic and atmospheric GCMs brought 

with it new challenges in reproducing the observed circulation. When integrated with 

prescribed forcing at the air-sea boundary, the individual atmospheric and oceanic 

components showed some success in reproducing features of the observed climate. 

Upon coupling, however, the model climate tended to drift into an unrealistic state 

due to positive air-sea feedbacks that amplify the systematic errors in either compo-

nent. This climate drift proved to be a serious problem for simulating and predicting 

climate variability and projecting climate change, and led many modeling groups to 

employ so-called “flux correction” (also flux adjustment) schemes. These overrode 

the model generated air-sea fluxes to ensure a realistic mean state while still allowing 

the coupled system to develop internal variability and to respond to external forcing. 

Naturally, such an approach puts heavy constraints on CGCM behavior and has there-

fore been criticized (Neelin and Dijkstra 1995) and regarded as a temporary rather 

than a permanent solution. Efforts were made to eliminate flux-correction schemes 

from CGCMs and from the 1990s onward the majority of models do not use them 

though the latest coupled model intercomparison project phase 5 (CMIP5; Taylor et al. 

2012) still contains a few flux-corrected GCMs. 

The fact that most current CGCMs do not use any flux correction schemes is in-

dicative of the progress models have made since the early days. Nevertheless, 

CGCMs continue to face serious challenges in reproducing observed and past climate. 

In the following three paragraphs we introduce three of the issues that feature promi-

nently in the present overview. 

One of the most challenging aspects in GCMs is the representation of tropical 

convection because it involves spatial scales that are much smaller than those of the 
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general circulation but nevertheless have a profound influence on it (see e.g. Arakawa 

2004 for a review of the representation of convection in GCMs). Moreover tropical 

convection not only involves subgrid-scale dynamics but also several other processes 

that need to be parameterized, such as cloud microphysics, radiation, and turbulence. 

Since the precipitation that results from tropical convection is relatively well observed, 

it provides an integrative measure of model performance and has been the focus of 

many diagnostic studies. While in recent years there have been efforts to explicitly 

resolve tropical convection (see subsection 6.1), which requires grid resolutions of 4 

km or finer, current computer speeds do not permit to integrate global models of this 

kind beyond a few months. Even assuming that the rapid increase in computational 

power over the last few decades will continue into the future, it seems likely that long-

term climate simulations will depend on some kind of convective parameterizations in 

the near term and possibly beyond. 

Another challenge for GCMs in the tropics is resolving the sharp vertical gradi-

ents that characterize the atmospheric planetary boundary layer (PBL) and oceanic 

thermocline (OT). In the atmosphere this is particularly problematic in the marine 

boundary layer over the eastern subtropical oceans where sharp gradients of tempera-

ture and moisture occur over a vertical distance as short as a few 10s of meters (e.g. 

Roach et al. 1982). In the ocean, the equatorial thermocline, which separates the warm 

and thin upper layer from the cool deep ocean, presents similar sharp gradients. Both 

PBL and OT are difficult to simulate in GCMs (Suarez et al. 1983; Moeng and Ste-

vens 2000; Xu et al. 2013a), whose typical vertical grid spacing is too coarse to fully 

resolve such sharp gradients. 

The representation of land-surface processes poses another challenge to current 

GCMs. Fluxes of sensible and latent heat are crucial in determining PBL structure and 
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hence terrestrial precipitation. These fluxes, however, depend on the complex interac-

tion among atmospheric radiation, soil moisture and various vegetation types. Current 

observations of the relevant properties are not sufficient to validate GCMs on a global 

scale, which hampers efforts toward improving existing models. While satellite ob-

servations can help to infer properties such as soil moisture over some areas, they are 

of limited use over the rainforests that cover large portions of the tropics. Due to these 

reasons there are large uncertainties associated with the representation of land-surface 

processes in GCMs. 

The aim of this chapter is to give an overview of the challenges facing current 

coupled GCMs. It should be stressed that the choice of issues covered is highly selec-

tive and guided by the authors’ individual areas of expertise. While these are fairly 

diverse the authors lay no claim to a comprehensive review. Nevertheless we hope 

that the material covers a wide enough range to be helpful to model users and devel-

opers alike. To the former, as an overview of the limitations of current GCMs; to the 

latter as a guide to target areas for model improvement. We also hope that the synthe-

sis provided in section 7 will give the community some food for thought regarding the 

common aspects of GCM biases in different tropical regions. The focus will mostly be 

on mean state errors, but the influence of these errors on interannual variability will 

also be discussed. Variability on intraseasonal timescales, such as the Madden-Julian 

oscillation (MJO; Zhang 2005), will not be covered here due to our limited expertise 

in this area and due to length considerations. We note, however, that correct represen-

tation of the MJO remains one of the major challenges of current GCMs and refer the 

reader to a model evaluation by Kim et al. (2009). 

Since this overview will rely heavily on the comparison of GCMs and observa-

tions we briefly summarize here the relevant datasets. In addition to the CMIP5 inter-
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comparison described above, many studies have used models from the previous inter-

comparison, CMIP3 (Meehl et al. 2007; see Table 1 for a list of models). While 

CMIP3 models formed the basis of the Intergovernmental Panel on Climate Change’s 

(IPCC) fourth Assessment Report (AR4), the CMIP5 models form the basis of the 

AR5. Since there are about 6 years between the two, most CMIP5 models feature fur-

ther development relative to CMIP3. 

On the observational side, the following datasets feature in this overview. For the 

sea-surface temperatures (SST) the OISST (Reynolds et al. 2002) and GISST (Rayner 

et al. 1996) data are featured. The former is a blend of satellite and in-situ observa-

tions while the latter consists of in-situ observations only, with gaps filled in through 

statistical techniques. Precipitation data is from the Global Precipitation Climatology 

Project (GPCP; Adler et al. 2003), the Climate Prediction Center Merged Analysis of 

Precipitation (CMAP; Xie and Arkin (1996), and the Tropical Rainfall Measurement 

Mission (TRMM; Adler et al. 2000). The first two present a blend of satellite and 

rain-gauge data, while the third one is based on satellite data only. Surface winds are 

from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS; Wood-

ruff et al. 2011), while surface wind stress is from TropFlux (http://www.locean-

ipsl.upmc.fr/tropflux/). Subsurface ocean temperatures are from the World Ocean At-

las 2009 observations (Locarnini et al. 2006). 

Reanalysis is a technique that essentially blends observations and GCM simula-

tions to derive a gapless record of relevant atmospheric and oceanic variables. Several 

reanalysis products feature in this overview. These are the European Center for Medi-

um Range Forecast (ECMWF) Reanalysis (ERA40; Uppala et al. 2005), the satellite 

era ECMWF Interim reanalysis (ERA-Interim; Dee et al. 2011), the National Center 

for Environment Prediction (NCEP) and National Center for Atmospheric Research 



 9 

(NCAR) reanalysis (NCEP; Kalnay et al. 1996), and the NCEP Climate Forecast Sys-

tem reanalysis (CFSR; Saha et al. 2010). 

Sections 2, 3 and 4 look at GCM performance in the Pacific, Atlantic and Indian 

Ocean basins, in that order. Challenges regarding the representation of land-surface 

process are treated in section 5, with some illustrative examples from agro-

hydrological models. The potential benefits of increasing model resolution are evalu-

ated in section 6. In section 7, we summarize sections 2-6 and discuss the challenges 

that lie ahead for GCMs and how these might be addressed. 

2  GCM biases in the tropical Pacific Ocean 

2.1 The mean state of the tropical Pacific and its representation in GCMs 

Latent heat of condensation over precipitating regions of the Pacific Ocean drives 

a significant part of the upward branches of the Hadley and Walker circulations. The-

se features of the mean general circulation export heat, moisture, and angular momen-

tum to the subtropics and midlatitudes. The Pacific Ocean specifically is host to 

ENSO, the mode of air-sea interaction that dominates global interannual climate vari-

ability. Atmospheric teleconnections originating from atmospheric heating anomalies 

in the central Pacific propagate poleward and eastward as stationary Rossby waves, 

steering the jet stream and affecting midlatitude weather in the winter hemisphere 

(Hoskins and Karoly 1981; Wallace and Gutzler 1981). A schematic diagram of tropi-

cal Pacific mean climate and El Niño conditions is given in Fig. 1. More detailed ex-

planations follow below. 

The observed climatology of precipitation (Fig. 2a) over the tropical Pacific fea-

tures a narrow zonal band of precipitation known as the intertropical convergence 

zone (ITCZ). This band merges into a broader region of precipitation over the warm-
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est waters in the western Pacific Ocean (Fig. 3a). A third arm of precipitation, the 

South Pacific convergence zone (SPCZ), stretches southeast from the equatorial West 

Pacific. The Walker cell (Walker 1923, 1924, 1928; Bjerknes 1969) dominates the 

mean zonal circulation, with easterly trade winds at the surface (Fig. 4) and ascent in 

the precipitating regions of the West Pacific warm pool (Fig. 2). The Hadley cell 

(Halley 1686) dominates the mean meridional circulation, with surface convergence, 

precipitation, and mean upward motion in the deep tropics, notably in the zonally 

symmetric ITCZ, and adiabatic descent of dry air outside convective regions and 

throughout the subtropical latitudes. 

Atmospheric heating and surface convergence in the western Pacific component 

of the Walker circulation, and zonal angular momentum conservation in the Hadley 

circulation, give rise to the easterly trade winds along the equatorial Pacific (Fig. 4). 

The easterly wind stress pushes the mean sea level up and the thermocline depth down 

in the western equatorial Pacific, increasing its warm water volume. It also lowers sea 

level and shoals thermocline depth in the eastern equatorial Pacific Ocean, enabling 

cold sub-thermocline water entrainment into the mixed layer there. The deep warm 

mixed layer in the western Pacific is known as the western Pacific warm pool, while 

the region of shallow mixed layer and cold sea-surface temperature (SST) in the east-

ern Pacific is known as equatorial cold tongue. 

The distribution of annual mean SST and precipitation in the eastern and central 

Pacific is markedly asymmetric about the equator, with SST and precipitation higher 

to the north than to the south (Figs. 2a and 3a). This meridional asymmetry is surpris-

ing in view of the fact that annual mean insolation is approximately symmetric about 

the equator. Only in March and April are SST and precipitation nearly symmetric and 

precipitation maxima found both north and south of the equator  (observations in Fig. 
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5). From May through October the meridional asymmetry strengthens and matures, 

with SST and precipitation decreasing south of the equator. This results in a single 

ITCZ north of the equator that reaches its northernmost latitude in October. The annu-

al cycle of meridional asymmetry is closely tied to an annual cycle of meridional wind 

stress magnitude on the equator, where cross-equatorial winds are weakest in boreal 

spring and strongest in boreal fall. The associated upwelling and mixing on the equa-

tor maintain a pronounced annual cycle of equatorial SST (despite the semiannual cy-

cle of solar radiation) with October being the coldest month of the equatorial Pacific 

cold tongue (Mitchell and Wallace 1992). 

Philander et al. (1996) suggested that the ultimate reason for the eastern Pacific 

meridional asymmetry lies in the orientation of the eastern boundary (American west 

coast), which is parallel to the southeast trades in the Southern Hemisphere, but per-

pendicular to the northeast trades in the Northern Hemisphere. Thus alongshore winds 

in the Southern Hemisphere drive coastal upwelling, while offshore winds in the 

Northern Hemisphere do not. The resulting initial meridional SST asymmetry is am-

plified by the wind-evaporation-SST (WES; Xie and Philander 1994) feedback. Warm 

SST anomalies in the Northern Hemisphere, for example, are associated with souther-

ly wind anomalies that strengthen the southeast trades and weaken the northeast trades, 

and the resulting latent heat flux anomalies amplify the initial asymmetry. The posi-

tive WES feedback reduces the damping of SST anomalies by evaporation and thus 

facilitates the westward propagation of long atmospheric Rossby waves that propagate 

initial asymmetries from the eastern boundary toward the basin interior (Xie 1996). 

For a detailed review of the mechanisms governing the meridional asymmetry of the 

Hadley circulation the reader is referred to Xie et al. (2005). 
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Most coupled GCMs face similar problems in reproducing the meridional asym-

metry of the eastern Pacific. Mechoso et al. (1995) noted that instead of an ITCZ that 

mostly stayed in the Northern Hemisphere, many models had a so-called double ITCZ 

bias: two zonal bands of surface convergence and precipitation between 5-10° latitude, 

one in each hemisphere. Though there has been improvement over the intervening 

years of model development, many of the same biases persist in today’s GCMs (Fig. 

2b). De Szoeke and Xie (2008) found that while the CMIP3 models often simulated 

some meridional asymmetry, many underestimated it (Figs. 2b and Figs. 3b), and as a 

result simulated an ITCZ alternating between the hemispheres with the seasons (Fig. 

5). 

Dai et al. (2006) found that the double ITCZ bias in coupled GCMs is amplified 

by the excessive westward extension of the equatorial cold tongue, which tends to 

split the ITCZ into two branches straddling the equator. Lin (2007) analyzed tropical 

biases in 22 coupled GCMs from CMIP3 and 12 of their atmospheric GCM counter-

parts. They found that the double ITCZ and the cold equatorial bias in these models 

mostly stem from an overly strong Walker circulation related to excessive warm pool 

precipitation, and from excessive sensitivity of precipitation to SST. Excessive precip-

itation is also present in the atmospheric components of the models forced with ob-

served SST (Schneider 2002), which is likely due to deficiencies in their convective 

schemes. Regarding the equatorial easterly and cold SST biases, Luo et al. (2005) 

have shown that considering the surface ocean current speed in the momentum trans-

fer calculations reduces the easterly stress and thus alleviates some of the SST bias in 

their coupled model. 

The excessive sensitivity of precipitation to SST in models is often compounded 

by inadequate radiative effects of clouds associated with precipitation (Lin 2007). 
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Many GCMs produce too little cirrus and cumulus cloud in response to deep convec-

tion, and thus underrepresent the net reduction of surface shortwave radiation associ-

ated with these cloud types (Ramanathan and Collins 1991). Thus surface shortwave 

radiation and SST decrease less than they should, which facilitates continued deep 

convection. 

Another potential source of GCM deficiencies concerns the response of latent 

heat flux (LHF) to SST anomalies (Lin 2007). Due to the excessive surface winds, 

most models overpredict mean LHF over the tropical oceans, contributing to the cold 

SST biases that prevail over much of the tropical oceans. On the other hand, the simu-

lated LHF anomalies tend to erroneously enhance SST anomalies. This can be seen by 

expanding the LHF anomaly as a product of a friction velocity u* and a moisture 

component q*,  

LHF’ = u*q* – <u*q*> = u*’<q*> + <u*>q*’ + u*’q*’ − <u*’q*’>, 

where angular brackets and primes denote mean fields and deviations from the mean 

over the tropics, respectively. 

LHF anomalies are dominated by the first two terms on the right hand side. Nega-

tive u*’ anomalies tend to occur in the weak converging winds over warm SST anom-

alies. q*’ anomalies, on the other hand, are only weakly correlated to SST because the 

sea-air specific humidity difference stays small. As a result simulated LHF anomalies 

are too weak over warm SST, amplifying SST anomalies associated with the Walker 

circulation. 

The double ITCZ problem is exacerbated by a coupled feedback involving the 

equatorial trades. In observations the equatorial trades (both zonal and meridional 

components) are weakest in boreal spring, when the ITCZ is closest to the equator. In 

GCMs, however, the boreal spring ITCZ often migrates farther into the Southern 
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Hemisphere, which leads to a spurious second maximum in the strength of the equato-

rial trades. Upwelling and mixing associated with the meridional wind cools the SST, 

thus further discouraging deep convection close to the equator. This causes the annual 

average SST, and even the minimum SST, on the equator to be colder in simulations 

with an alternating ITCZ (de Szoeke and Xie 2008; Fig. 3b). 

Stratocumulus clouds reduce surface insolation preferentially in the Southern 

Hemisphere (Hartmann et al. 1992; Klein and Hartmann 1993). Errors in the represen-

tation of these low clouds in GCMs contribute to the underestimation of meridional 

asymmetry of the East Pacific climate (Ma et al. 1996; Philander et al. 1996; Gordon 

et al. 2000; de Szoeke et al. 2006). Low-cloud radiative forcing is quite varied in pre-

sent state-of-the-art climate models, partly because of its sensitivity to the underlying 

surface temperature (Lauer et al. 2010; de Szoeke et al. 2012). This has a large impact 

on the simulated surface radiation budget and remains the largest source of uncertain-

ty to climate change projections (Bony and Dufresne 2005; Lauer et al. 2010). 

Low-level cloud cover is closely linked to the underlying SST (Klein and Hart-

mann 1993), which could potentially amplify meridional asymmetries in the eastern 

Pacific. Using an ensemble of CMIP3 CGCMs de Szoeke and Xie (2008) show that 

the intermodel SST spread in the southeastern Pacific is correlated to the overlying 

stratocumulus incidence yet surface solar flux does not seem to determine the meridi-

onal ITCZ asymmetry in the eastern Pacific. Several CMIP3 models have weak 

asymmetry despite having strong cloud forcing and cold SST in the Southern Hemi-

sphere. Among these models the meridional asymmetry in February-April is correlat-

ed much better to winter wind speed in the northern tropical Pacific near Central 

America. The stronger-than-observed winds in that region are consistent with the ab-

sence of the northern ITCZ and convergence into the Southern Hemisphere. These 
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winds keep SST cool and thus prevent the ITCZ from migrating into the Northern 

Hemisphere in the following spring (de Szoeke and Xie 2008). 

2.2 The simulation of tropical Pacific interannual variability 

In addition to the Walker cell, Bjerknes (1969) also noted a positive feedback be-

tween equatorial easterly trade wind anomalies and cold SST in the eastern equatorial 

Pacific Ocean. The easterly anomalies associated with an enhanced Walker circula-

tion act to enhance the gradient of SST by advecting warm surface water toward the 

western Pacific and raising the thermocline in the eastern equatorial Pacific. Due to 

the Earth’s rotation, easterly wind stress drives poleward divergence off the equator 

that further raises the thermocline and cools the SST. The cycle of enhancement of the 

Walker circulation: easterly wind stress, thermocline tilt, and zonal SST gradient 

along the equator are known as the Bjerknes feedback. Anomalously warm SST dur-

ing November-December-January and the collapse of the fishery dependent on nutri-

ent-rich upwelling off the coast of Ecuador and Peru are known as El Niño; a seesaw 

of Indo-Australian sea level pressure anomalies anti-correlated to the Pacific basin are 

called the Southern Oscillation (Walker 1923, 1924, 1928). Combined, the El Niño-

Southern Oscillation (ENSO) phenomenon is one of the most famous examples of in-

terannual climate variability (see Fig. 1b for a schematic diagram). Reproducing its 

statistical behavior and predicting its temporal evolution remain a challenge for 

GCMs. 

While the too-strong Walker circulation and meridionally alternating double 

ITCZ biases (see subsection 2.1) are common to many GCMs, errors in the simulation 

of ENSO are less consistent though some commonalities exist. Whereas observed 

SST anomalies are positively skewed, with stronger interannual warm SST events 

than cool events, model distributions tend to be more symmetric (though the inter-
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model variability is large). A multi-model study by An et al. (2005) suggests that the 

lack of skewness is due to insufficient nonlinear oceanic advection (both in the hori-

zontal and vertical direction). 

ENSO events recur quasi-regularly every 3-8 years and typically peak in Decem-

ber. While early models tended toward regular biennial ENSO cycles, most models in 

the CMIP3 and CMIP5 ensembles have improved substantially in this regard, with 

realistic power in the 3-8 year band and reduced power in the 1-3 year band (Belleng-

er et al. 2013). The seasonality of ENSO anomalies, however, remains too symmetric 

in GCMs, with models simulating relatively too little SST variability in November-

January compared to March-May (AchutaRao and Sperber 2006, Bellenger et al. 

2013). 

The recharge oscillator model (Jin 1997) simulates many of the salient features of 

ENSO by modeling its essential feedbacks with linear parameters. Bellenger et al. 

(2013) find that the atmospheric wind stress feedback (wind stress anomaly per SST 

anomaly) is too weak in all but 3 of the CMIP3 and CMIP5 models. On the other hand 

damping of SST anomalies due to surface fluxes, comprised chiefly of solar cloud 

forcing (Lloyd et al. 2012) and latent heat flux, in the CMIP3 and CMIP5 models is 

too strong, indicating compensating errors may be partly responsible for the reasona-

ble ENSO amplitudes simulated by these models. Regarding errors in amplitude, an 

interesting relation to the mean state exists in that models with too weak an annual 

cycle in the eastern tropical Pacific suffer from excessively strong ENSO amplitude 

(Guilyardi 2006). 

Due to its dominant influence on global climate anomalies, prediction of ENSO 

remains one of the major targets of modeling centers. Through the turn of the millen-

nium dynamical models demonstrated no additional predictive skill relative to statisti-
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cal models, but recent generations of dynamical models do provide useful predictabil-

ity over their statistical counterparts (Luo et al. 2008). Models were long troubled by a 

“predictability barrier” in the seasonal cycle such that forecasts initialized before 

March-April had no useful prediction skill after March-April. Recent dynamical 

ocean-atmosphere models (e.g. the NCEP Coupled Forecast System CFS version 2) 

have improved and offer predictability beyond statistical models, even when making 

seasonal forecasts through March-April (Luo et al. 2008; Barnston et al. 2012). 

3  GCM biases in the tropical Atlantic 

In the early days of CGCMs, research interest was focused mainly on studying 

ENSO and simulating the climatic response to greenhouse gas forcing. While CGCMs 

of the 1980s typically suffered from severe biases in the tropical Pacific (see section 

2; also Neelin et al. 1992) substantial progress has been made over the last two dec-

ades, though several issues remain (see section 2 and de Szoeke and Xie 2008). In the 

tropical Atlantic, on the other hand, improvements have been more limited. During 

the 1980s and 1990s, modelers mainly paid attention to the simulation of the tropical 

Pacific. The study by Davey et al. (2002) was perhaps the first CGCM inter-

comparison that included the Atlantic basin. They found that the annual mean SST 

gradient along the equator had the wrong sign, relative to observations, in all GCMs 

except one (note, however, that that GCM was only fully coupled in the tropical At-

lantic and Pacific). Thus the GCMs produced cold SST in the western warm pool and 

warm SST in the eastern cold tongue (see Fig. 6a). In the equatorial Pacific, on the 

other hand, the zonal SST gradient had the right sign in all the models. The severity of 

the equatorial Atlantic biases prompted several studies into their origins, the results of 

which will be discussed in subsection 3.1. 
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Another persistent problem exists in the southeastern tropical Atlantic close to the 

African coast, where simulated SSTs are often 5 K warmer than observed (Fig. 6a; 

Wahl et al. 2011; Huang et al. 2007). This bias is very similar to the one in the south-

east Pacific (see section 2) and often attributed to under-representation of stratocumu-

lus decks in GCMs. A significant difference between the southeast Pacific and Atlan-

tic is that the latter features surface current convergence at around 16ºS, where the 

poleward Angola current and the equatorward Benguela current meet. The strong 

temperature gradient associated with this Angola-Benguela frontal zone (ABFZ) pre-

sents an additional challenge for GCMs (Xu et al. 2013a), as will be further discussed 

in subsection 3.2. 

The biases in CGCMs are often attributed to coupled processes amplifying small 

initial errors in the individual components. While error amplification certainly does 

exist in the tropical Atlantic, e.g. through the Bjerknes feedback (Richter and Xie 

2008; see subsection 2.1 for an explanation of the Bjerknes feedback), it has also be-

come clear that substantial biases already exist in the atmospheric and oceanic com-

ponents with prescribed forcing (Chang et al. 2007; Richter and Xie 2008; Patricola et 

al. 2012). In terms of improving CGCMs it is helpful to identify the errors in their un-

coupled components since this more readily points to specific issues that need to be 

addressed. Following this philosophy, we describe the biases in the atmospheric and 

oceanic components in subsections 3.1 and 3.2, respectively. Subsection 3.3 discusses 

to what extent Atlantic biases affect seasonal predictions and climate change projec-

tions. 

3.1 Biases originating in the atmospheric component 

Davey et al. (2002) noted that the equatorial easterlies in the CGCMs are weaker 

than observed, particularly in boreal spring, when some models even feature wester-
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lies on the equator. Subsequent studies confirmed this feature and showed that it was 

already present in uncoupled AGCMs (Okumura and Xie 2004; DeWitt 2005; Chang 

et al. 2007; Richter and Xie 2008). Okumura and Xie (2004) speculated that the weak 

equatorial easterlies in spring were responsible for the failure of CGCMs to capture 

the annual evolution of the Atlantic cold tongue. This was confirmed by DeWitt 

(2005) who performed sensitivity tests with one particular CGCM. His results showed 

that unrealistically weak equatorial easterlies reduce thermocline slope and upwelling 

velocity, both of which contribute to the equatorial SST biases. Later sensitivity stud-

ies by Wahl et al. (2009) and Richter et al. (2012a) gave further support to this idea. 

Richter and Xie (2008) demonstrated that the westerly bias and thermocline 

deepening are ubiquitous among CGCMs participating in CMIP3. They also con-

firmed the robustness of the westerly surface wind bias in the standalone atmospheric 

components of the CGCMs. Various factors have been found to contribute to the 

weak easterlies in uncoupled GCMs. 1) Deficient precipitation over the Amazon basin 

(Chang et al. 2008; Richter and Xie 2008; Patricola et al. 2012) and excessive precipi-

tation over the Congo basin (Richter and Xie 2008; Patricola et al. 2012) weaken the 

Atlantic Walker cell and thus the equatorial surface winds. The continental influence 

on surface winds is supported by experiments with a quasi-geostrophic atmospheric 

model with prescribed heating over equatorial South America (Chang et al. 2008), by 

GCM experiments with modified convection strength over equatorial South America 

and Africa (Tozuka et al. 2011; Wahl et al. 2011; Richter et al. 2012a), and by region-

al high-resolution atmospheric model experiments with different convection and radi-

ation schemes (Patricola et al. 2012). 2) Migration of the marine ITCZ into the South-

ern Hemisphere (Richter and Xie 2008; Grodsky et al. 2012; Doi et al. 2012; Richter 

et al. 2012b) leads to weak surface easterlies on the equator. Weakening of equatorial 
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trades in relation to southward ITCZ migration is also found in observed interannual 

variability. Theoretical explanations for this phenomenon are the meridional advec-

tion of zonal momentum (Okumura and Xie 2004) and the shallow westerly jet that 

accompanies the Atlantic ITCZ in the central basin (Grodsky et al. 2003). Both 1) and 

2) appear to contribute to the westerly surface wind biases in the equatorial Atlantic 

but further studies are needed to determine their relative importance. An additional 

explanation has been put forward by Zermeno and Zhang (2013) who argue that in-

sufficient moment entrainment across the PBL top is one of the root causes. A more 

recent evaluation by Richter et al. (manuscript submitted), however, suggests that this 

is only a minor factor. Other factors may be at play but have not been discussed in the 

literature so far. Relating these biases to particular shortcomings in the AGCM pa-

rameterizations remains a major challenge. 

Apart from playing a central role in the AGCMs’ westerly surface wind bias, 

tropical convection itself is also of major interest due to its vital importance to water 

resources. Since convection cannot be explicitly resolved in GCMs but has to be pa-

rameterized it is a potential source for GCM errors. We therefore discuss in some 

more detail here the role of convective parameterizations in tropical Atlantic GCMs 

biases (see Arakawa (2004) and Stensrud (2007) for reviews of different schemes). 

We note, however that other parameterizations, such as microphysics, turbulence, and 

land surface schemes may also have a large impact on the simulated equatorial sur-

face winds (see e.g. Wahl et al. 2009) and climate in general. 

Braconnot et al. (2007) compared results from a CGCM using the convection 

scheme of Tiedtke (1989) and Emanuel (1991). They found that the seasonal march of 

the ITCZ, which plays an important role in the SST simulation over the equatorial At-

lantic, is better reproduced when the Emanuel scheme is used. In addition, the Eman-
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uel scheme also achieves a better representation of the South American and West Af-

rican monsoon systems, which are known to play an important role in the develop-

ment of the equatorial Atlantic cold tongue. The cloud cover simulated by the Emanu-

el scheme also enhances the monsoon flow by strengthening the meridional surface 

temperature gradient between deep convective regions at the equator and subsidence 

regions to the south. 

More recently, Tozuka et al. (2011) analyzed three versions of the same CGCM 

differing only in their cumulus convection scheme. The three schemes tested were 

developed by Kuo (1974), Tiedtke (1989), and Emanuel (1991). Only the version us-

ing the Kuo scheme was successful in simulating the mean zonal SST gradient of the 

equatorial Atlantic with warm SST in the west and cool SST in the east (Fig. 7). To-

zuka et al. (2011) attributed the success of the Kuo scheme version to three major rea-

sons. 1) It correctly places the ITCZ to the north of the equator, while the two other 

versions erroneously place the ITCZ in the Southern Hemisphere. 2) It reproduces the 

intense precipitation over the northern part of South America, which provides favora-

ble conditions for equatorial easterly winds. Further sensitivity experiments by Tozu-

ka et al. (2011) using the atmospheric component of the CGCM indicated that remote 

forcing from the tropical Pacific plays an important role in suppressing convection 

over the region in the other two versions. 3) The Kuo scheme version simulates 

southerly winds along the southwestern coast of Africa that are comparable to obser-

vations, while the southerlies in the other two versions are much weaker than ob-

served. This is consistent with the notion that the seasonal cold tongue development is 

associated with the onset of the West African monsoon through its influence on cross-

equatorial winds (Mitchell and Wallace 1992; Okumura and Xie 2004). 
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While the results of Tozuka et al. (2011) highlight the performance of the Kuo 

scheme it should be noted that this scheme has long been criticized because it assumes 

that convection is controlled by the large-scale atmospheric moisture supply, which is 

often not the case in observations (Stensrud 2007). Moreover, the contrasting results 

of Braconnot et al. (2007) and Tozuka (2011) suggest that the performance of a given 

scheme is model dependent. Thus, rather than assessing the performance of convec-

tion schemes, the results should be seen as highlighting the fundamental influence that 

these schemes exert on the simulated climate. Changes in other parameterization 

schemes (e.g. microphysics, turbulence, or land surface) may also have large impacts 

(see Wahl et al. 2009) on tropical climate. Since these schemes also interact with the 

model’s convective parameterization, pinpointing the causes of atmospheric biases 

remains a difficult task. 

Warm SST biases along the southwest African coast are a problem in all CMIP5 

GCMs. Equatorial surface wind biases may also play a role here (Patricola et al. 2012; 

Richter et al. 2012a; Grodsky et al. 2012; see subsection 3.2) via oceanic Kelvin 

waves that travel along the equatorial and coastal waveguides and adjust the thermal 

stratification (Florenchie et al. 2003; Rouault et al. 2007; Luebbecke et al. 2010). 

There is, however, also evidence that underestimation of along-shore winds contribute 

to the biases (Richter et al. 2012a) and that local feedbacks in the eastern tropical At-

lantic affect the biases (Patricola et al. 2012). Such an influence of local along-shore 

winds on Ekman pumping has been documented in observations of interannual-to-

intraseasonal variability in the region (Polo et al. 2008; Richter et al. 2010; DeWitt et 

al. 2011). To what extent the oceanic model components contribute to the warm SST 

bias in the southeast Atlantic is discussed in subsection 3.2. 
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While the contribution of surface wind stress to the southeast Atlantic SST biases 

has gained attention in recent years, there is a longer history of examining the contri-

bution of subtropical stratocumulus decks. This cloud type covers large portions of 

both the southeast Atlantic and Pacific oceans and, due to its high reflectivity, has a 

net cooling effect on the ocean surface (Stephens and Greenwald 1991; Hartmann et 

al. 1992; Klein and Hartmann 1993). AGCMs have notorious difficulties in represent-

ing low-level cloud (e.g. Mechoso et al. 1995; see also section 2) and this has been 

shown to contribute to the warm SST biases in the stratocumulus regions of the south-

east Pacific (Ma et al. 1996; Yu and Mechoso 1999) and Atlantic (Huang et al. 2007; 

Hu et al. 2011). The dependence of stratocumulus on lower tropospheric stability 

(LTS; Klein and Hartmann 1993) suggests a coupled feedback (Randall 1980): warm 

SSTs reduce LTS (commonly defined as the potential temperature difference between 

700 hPa and the surface) and thereby create an environment that is less favorable to 

stratocumulus. This leads to reduced cloud cover and increased net shortwave heating 

at the surface, which further warms SST and completes the feedback loop. Due to this 

positive feedback mechanism, initial errors in simulated cloud cover and coastal 

upwelling are quickly amplified and can lead to nearly cloud-free conditions over the 

eastern subtropical oceans. To what extent stratocumulus deficiencies can explain the 

southeastern SST biases, however, needs further study. SST errors are most pro-

nounced just off the coast while stratocumulus decks typically extend more than 1000 

km offshore. The coastal signature of the SST errors indicates that the under-

representation of coastal upwelling plays a large role as well. Errors in coastal 

upwelling might be partly related to errors in surface wind forcing, as discussed in the 

previous paragraph. A large portion, however, is likely related to problems in the oce-

anic component, as will be discussed in subsection 3.2. 
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Regarding the relative importance of surface wind stress and shortwave radiation 

in the southeastern SST biases there is still some degree of uncertainty. Based on sen-

sitivity studies with the NCAR Community Climate System Model (CCSM) version 2, 

Large and Danabasoglu (2006) estimate that both contribute in roughly equal parts. 

However, the combined contribution of these two effects to the total SST bias was 

only 40%, which indicates that other significant error sources have yet to be identified. 

It is interesting to note that regional coupled models that do not include the equatorial 

region typically produce southeastern SSTs that are colder than observed (Penven et 

al. 2005; Veitch et al. 2010). Since the regional models are not fundamentally differ-

ent from the GCMs, this suggests that remote influences from the equator might be an 

important factor in the biases. 

Ma et al. (1996) studied the regional impact of subtropical stratocumulus biases. 

Their study focuses on the southeastern Pacific but should also apply to the southeast-

ern Atlantic, due to the similarity of the two regions. They found that correcting the 

southeastern tropical Pacific stratocumulus biases could potentially also benefit the 

equatorial Pacific. When they prescribed 100% cloud cover over the southeastern Pa-

cific in a sensitivity test with the UCLA coupled GCM, they found not only local SST 

cooling but also a strengthening of the southeast trades that extended all the way to 

the equator and led to a more pronounced cold tongue. This kind of impact, however, 

may be due to the idealized set-up of the experiment and also might not be robust 

across models. A more recent study by Tompkins and Feudale (2010) compared two 

versions of the ECMWF seasonal forecast system with different physics. The more 

recent version reduces the stratocumulus bias in the southeast Atlantic but at the same 

time suffers from a more severe SST bias in the Gulf of Guinea relative to the previ-
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ous version. Thus it is not clear whether improving southeast Atlantic stratocumulus 

biases will necessarily improve equatorial biases in all models. 

3.2 Biases originating in the oceanic component 

In most GCMs, the largest tropical Atlantic SST bias of up to 8º-10º C is not lo-

cated on the equator but along the Namibian and Angolan coast near the ABFZ. An-

other intriguing feature is that the amplitude of the warm bias is significantly larger 

south of the ABFZ than north of the ABFZ. As mentioned in subsection 3.1, the 

ABFZ is a unique feature of the southeast Atlantic and maintained by two opposing 

currents – the southward Angola Current (AC) north of the ABFZ and the northward 

Benguela Current (BC) south of the ABFZ. Figure 8 gives a schematic depiction of 

the ABFZ and the associated ocean circulation in the Southeast Tropical Atlantic. The 

warm AC is fed by the Equatorial Undercurrent (EUC) and South Equatorial Under-

current (SEUC) and carries warm and saline water from the equatorial region to the 

ABFZ along the Angola coast against the local southerly wind (Wacongne and Piton 

1992; Yamagata and Iizuka 1995). The cold BC is driven by the pressure gradient as-

sociated with the strong upwelling maintained by the prevailing southerly winds along 

the Namibian coast (Peterson and Stramma 1991) and is supplied by the southern 

limb of the subtropical gyre in the South Atlantic and water from the Indian Ocean 

through the Agulhas Current (Veitch et al. 2010). The two coastal currents converge 

near 16°S, forming the ABFZ (Lass et al. 2000), where a sharp temperature gradient 

is formed. In contrast, no prominent doming structure is present in the Pacific circula-

tion system. The main current in the coastal upwelling system of the southeast Pacific, 

the Humboldt current, also known as the Peru Current, starts from approximately 

43°S, penetrates all the way to the equatorial zone and feeds the South Equatorial 

Current (SEC) with no major convergence zones or fronts (Penven et al., 2005). 
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The fact that the location of the largest Atlantic SST bias coincides with the loca-

tion of the ABFZ raises the possibility that the bias is attributable, at least partially, to 

the ocean models’ failure in correctly simulating the location and strength of the 

ABFZ. Given the strong SST gradient in the region, it is conceivable that any misrep-

resentation of the ABFZ can potentially lead to large SST biases. In fact, in a recent 

study, Xu et al. (2013b) analyzed 38 CMIP5 models and found a statistically signifi-

cant correlation between the SST biases and ABFZ location errors with a R2=0.38 

among the CMIP5 models. Almost all CMIP5 models simulate a southward-displaced 

ABFZ with some showing a southward shift as far as 10°. 

Another factor that represents a major challenge for ocean models is the sharp 

contrast in the upper ocean thermal structures north and south of the ABFZ. Figure 9 

shows a vertical section of subsurface temperature off the coasts of Angola and Na-

mibia from the equator to 30°S, based on NCEP/CFRS reanalysis data (Saha et al., 

2010). The temperature is averaged over a 1° distance from the coast. It is evident that 

north of the ABFZ the water is considerably warmer and much more stratified with a 

sharp and shallow thermocline located at 30-40 m below the surface. Conversely, 

south of the ABFZ, there is no sharp thermocline and the isotherms bulge upward, 

indicative of strong upwelling that brings cold deep ocean water to the surface. The 

sharp and shallow thermocline off the Angolan coast shown in the NCEP/CFRS rea-

nalysis is validated by hydrographic measurements (e.g. Lass et al. 2010). Simulating 

such a steep thermal gradient poses a challenge for global ocean models that typically 

have rather coarse vertical resolution. Systematic errors in representing the thermo-

cline can result in large subsurface temperature biases that can be advected down-

stream by the AC to the Benguela coast, affecting the upwelled water and causing a 

warm bias to form in the Benguela upwelling zone. 



 27 

Xu et al. (2013a) examined these oceanic mechanisms of generating SST warm 

biases along the Namibian and Angolan coasts by 1) analyzing ocean data assimila-

tion (ODA) products and 2) conducting eddy-resolving regional ocean model simula-

tions forced by best estimates of observed atmospheric forcing fields. The finding of 

their study can be summarized as follows: 1) Even with the constraint of existing 

ocean observations, many ODA products, such as SODA (Carton and Giese 2008) 

and HYCOM (Chassignet et al., 2007), show warm SST biases that share many 

common features to those in CGCMs, albeit with a weaker amplitude of ~ 2°C. Many 

ODA products also exhibit significant subsurface warm biases (~3-4°C) in the sharp 

and shallow thermocline off the Angolan coast. 2) The warm bias near the ABFZ is 

related to overshooting of the AC in the ocean models. The overshooting problem 

could be caused by either underestimation of upwelling in the Benguela region and 

hence too weak a BC, or by overestimation of the AC. The former may be related to 

unrealistically weak alongshore winds off the Namibian coast as suggested by Large 

and Danabasoglu (2006), while the latter may be caused by an unrealistically strong 

negative wind stress curl north of the ABFZ that has a controlling effect on the 

strength of the southward AC as shown by Colberg and Reason (2006). 3) The ther-

mocline bias off the Angolan coast makes a significant remote contribution to the 

warm SST bias south of the ABFZ in the Benguela upwelling zone. The subsurface 

warm bias makes its way to the Benguela upwelling zone through advection by the 

AC and subsequently through the Benguela Undercurrent, causing upwelled water to 

be considerably warmer than observed. Xu et al. (2013a) further shows, using region-

al model simulations that are confined to the Southeast Atlantic region, that the Ango-

la thermocline bias is linked to the bias in the equatorial thermocline, suggesting that 

the warm SST bias along the African coast may stem from systematic ocean model 
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errors in representing the sharp equatorial thermocline, particularly in the eastern At-

lantic basin. 

3.3 To what extent do model biases affect predictability in the tropical Atlan-

tic? 

The tropical Atlantic Ocean hosts several modes of variability that have signifi-

cant impacts on the climate of the surrounding continents (see Xie and Carton 2004 

and Chang et al. 2006 for an overview). The zonal mode of variability (Fig. 10b), also 

known as Atlantic Niño (Merle et al. 1980; Servain et al. 1982; Hirst and Hastenrath 

1983; Philander 1986; Chang et al. 2006) is an equatorial phenomenon with dynamics 

akin to ENSO in the Pacific (Zebiak 1993) that strongly influences precipitation over 

the Gulf of Guinea and surrounding coastal areas (Carton and Huang 1994; Giannini 

et al. 2003) as well as the West African monsoon (Okumura and Xie 2004; Chang et 

al. 2008). It has an amplitude of about 1 K and typically occurs in JJA at roughly 30 

month intervals. (There might be a secondary Atlantic Niño that peaks in November-

December, as suggested by Okumura and Xie (2006) though this mode will not be 

further discussed here). 

Another phenomenon called the “meridional mode” (Servain et al. 1999; Fig 10a) 

relies on a positive feedback involving surface wind, evaporation, and SST (Chang et 

al. 1997). The meridional mode influences the position of the Atlantic ITCZ and has 

been associated with droughts and floods on the adjacent continents (Moura and 

Shukla 1981; Folland et al. 1986; Nobre and Shukla 1996), as well as Atlantic Hurri-

cane variability (Kossin and Vimont 2007). The amplitude is about 1 K and the pre-

ferred season is MAM. The frequency spectrum has significant power between 3-10 

years but no sharp peak. A third mode, the Benguela Niño (Shannon et al. 1986; Fig 

10c), is associated with upwelling and SST anomalies along the southwest African 
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coast (Florenchie et al. 2003) and can have severe impacts on local fisheries as well as 

precipitation over southern Africa (Rouault et al. 2007). This mode varies on interan-

nual time scales and can have amplitudes as large as 3-4 K though such strong events 

only occur about once every 10-15 years. Skillful prediction of these modes of varia-

bility could have large benefits to society and it is hoped that prediction systems based 

on GCMs will be the tools to enable such predictions (Chang et al. 2003). In particu-

lar the Atlantic and Benguela Niños are thought to rely on wave dynamics similar to 

ENSO though there remains some debate on the extent to which these influences are 

dominant (Richter et al. 2010, Richter et al. 2013). If wave dynamics are indeed dom-

inant this should provide predictability of at least one season in advance. 

GCM biases in the tropical Atlantic have been identified as a serious problem 

well over a decade ago yet progress has been only moderate, and it is likely that it will 

take many more years to overcome the problem. An important question then is, 

whether seasonal prediction and global warming projections are significantly affected 

by such model errors. Previous studies have suggested that the skill of GCM predic-

tions in the tropical Atlantic is usually matched, or even outperformed, by persistence 

forecasts and statistical models (Repelli and Nobre 2004; Stockdale et al. 2006). A 

more recent study by Tompkins and Feudale (2010) found a moderate increase in the 

prediction skill of the West African monsoon in the ECMWF forecasting system. 

They attributed this increased skill, however, mostly to the improved ocean observa-

tion network and noted that the model suffered from a warm SST bias in the Gulf of 

Guinea. This warm bias, they suggest, contributes to precipitation that is too concen-

trated along the Guinea coast and thus degrades the prediction of the West African 

monsoon. The study therefore indicates that equatorial SST biases have to be over-

come in order to substantially improve seasonal climate prediction for the region. On 
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the other hand, the results also illustrate that model-external factors, such as an exten-

sive observational network, are a vital component for skillful prediction systems. 

How tropical Atlantic SST biases affect global warming projections has not re-

ceived much attention so far. One study by Ashfaq et al. (2011) focuses on the projec-

tions made with CCSM3. They find that a projection with built-in SST correction 

scheme produces significantly different precipitation changes in the tropics. The dif-

ferences are typically larger than the intermodel spread of the CMIP3 ensemble and 

thus add substantial uncertainty to future projections. 

Projected changes in interannual variability and hurricane frequency are even 

more uncertain. Many models, for example, fail to adequately represent the zonal 

mode of variability in the tropical Atlantic under present-day conditions (Richter et al. 

2012b) and therefore cannot answer the question how that mode will change under 

global warming. Wan et al. (2011) showed that the simulated tropical Atlantic re-

sponse to North Atlantic freshwater pulses (thought to have occurred several times in 

the last 100k years) depends strongly on a GCM’s cold tongue bias. Furthermore, the 

typical cold SST biases in the northern tropical Atlantic, often paired with deficient 

precipitation, are likely to impair their ability to project changes in hurricane frequen-

cy and intensity. Consistent with these biases, studies estimating cyclone activity in 

GCMs show much lower than observed activity in the North Atlantic (Camargo et al. 

2007, Tory et al. 2013), while other basins compare well with observations. We note, 

however, that other reasons, such as vertical wind-shear, likely contribute to the erro-

neously low hurricane activity in the North Atlantic. 

Downscaling studies using statistical models and high resolution AGCMs have 

shown that the response of hurricanes to global warming is very sensitive to the de-

tails of the projected SST patterns (Chauvin et al. 2006; Emanuel et al. 2008; Zhao et 
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al. 2009; Bender et al. 2010), which puts even more burden on the accuracy of CGCM 

projections. More work remains to be done to achieve a qualitative understanding of 

the impact of tropical Atlantic biases on global warming projections. 

4  GCM biases in the tropical Indian Ocean 

4.1 Mean state biases 

The background state of the Indian Ocean is heavily influenced by the monsoon 

circulation. In boreal summer, intense precipitation occurs over India and South Asia 

(Webster et al. 1999), which gives rise to southerlies over the basin and strong 

upwelling off Sumatra and Somalia with attendant SST cooling. In boreal winter, the 

center of precipitation migrates to the maritime continent and northern Australia, and 

northerlies dominate in the tropical Indian Ocean (Webster et al. 1998). 

The equatorial Indian Ocean, unlike its Pacific and Atlantic counterparts, is char-

acterized by westerly surface winds in the annual mean (Xie et al. 2002), except for 

the far western part of the basin. As a consequence equatorial upwelling is largely 

precluded and SSTs are uniformly warm across the basin (Fig. 2a) except off the Af-

rican coast. Furthermore, since the surface winds are generally weak, the equatorial 

thermocline is flat and deep, which reduces its influence on interannual SST variabil-

ity (Xie et al. 2002). 

In most CGCMs the equatorial surface winds are reversed relative to observations, 

with an easterly bias of about 1-2 m/s (Cai and Cowan 2013, Nagura et al. 2013). As a 

consequence of the erroneous equatorial easterlies the thermocline is tilted upward 

toward the east, which gives rise to a Bjerknes feedback (see subsection 2.1) that is 

more pronounced than in observations (Fig. 11; Cai and Cowan 2013; see subsection 

4.2 on variability in the tropical Indian Ocean). The equatorial easterly wind bias also 
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affects thermocline structure in the off-equatorial region, giving rise to an erroneous 

eastward displacement of the thermocline dome in the southern tropical Indian Ocean 

(Fig. 11; Yokoi et al. 2009; Nagura et al. 2013). Nagura et al. report that both the 

equatorial wind bias and the displaced thermocline dome are insensitive to the choice 

of model horizontal resolution, atmospheric deep convection scheme, or ocean mixed 

layer scheme. 

As the Indian Ocean mean state is dominated by the monsoon, successful simula-

tion of the monsoon is necessary to adequately represent air-sea interaction in the In-

dian Ocean. Sperber et al. (2012) performed a comprehensive analysis of the monsoon 

in CGCMs and found that CMIP3 and CMIP5 models overestimate precipitation in 

the western Indian Ocean, which is consistent with the easterly wind biases found by 

Cai and Cowan (2013) and Nagura et al. (2013). Precipitation over the Indian subcon-

tinent is underestimated both in CMIP3 and CMIP5 models, indicating that the Indian 

monsoon is too weak in current CGCMs (Sperber et al. 2012). The transition from 

Indian to Australian monsoon is better simulated in CMIP5 models than in CMIP3 

models (Li et al. 2012). 

4.2 Representation of tropical Indian Ocean variability 

A notable climate phenomenon in the tropical Indian Ocean is the Indian Ocean 

Dipole mode (IOD; Saji et al. 1999; Webster et al. 1999). This interannual mode of 

variability is akin to ENSO in the tropical Pacific Ocean and thought to involve simi-

lar ocean wave dynamics. As in ENSO, equatorial Kelvin and long Rossby waves af-

fect SST variability and determine the time scale of the IOD (Rao et al. 2002; Feng 

and Meyers 2003; McPhaden and Nagura 2014). The slow ocean dynamics provide 

the memory of the mode and offer a potential for predictability of Indian Ocean cli-

mate. 
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A positive IOD event is defined by warm SST anomalies in the tropical western 

Indian Ocean and cool SST anomalies in the equatorial eastern Indian Ocean (Fig. 

12); the negative phase is defined by anomalies of the opposite sign. An essential 

component of the IOD mechanism is the upwelling off Sumatra (the eastern pole of 

the IOD), which brings wave-induced temperature anomalies to the surface and thus 

affects SST variability in this region (Murtugudde et al. 2000; Iizuka et al. 2000; Li et 

al. 2002). SST anomalies in the tropical western Indian Ocean (the western pole of the 

IOD) are excited by a combination of surface heat flux, and horizontal and vertical 

oceanic heat advection (Murtugudde et al. 2000; Iizuka et al. 2002; Li et al. 2002). 

The region northeast of Madagascar is subject to particularly strong SST variability 

due to strong upwelling (Xie et al. 2002; Foltz et al. 2010; Yokoi et al. 2012). The re-

sulting SST anomalies along the equator are further amplified by the Bjerknes feed-

back (Saji et al. 1999; Webster et al. 1999; Murtugudde et al. 2000). 

The IOD displays a clear seasonality, with the initial phase in boreal summer, 

mature phase in boreal fall, and termination phase in boreal winter (Fig. 12). This is 

due to the upwelling off Sumatra being most vigorous in boreal summer, which is 

forced by southeasterly winds during the Indian monsoon. These conditions allow for 

rapid growth of SST anomalies in this season (Li et al. 2003). Due to high correlation 

between indices of ENSO and IOD, it has been suspected that ENSO is a major initia-

tor of the IOD (Hendon 2003; Lau and Nath 2004; Shinoda et al. 2004). In addition, 

the initiation of the IOD has been ascribed variously to oceanic waves (Rao et al. 

2002; Feng and Meyers 2003; Behera et al. 2006) or the Antarctic Oscillation (Lau 

and Nath 2004). Termination, on the other hand, has been associated with the transi-

tion from Indian monsoon to Australian monsoon (Tokinaga and Tanimoto 2004), re-

flection of oceanic waves at the eastern coast of the African continent (Rao et al. 
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2002; Feng and Meyers 2003), or atmospheric intraseasonal variability (Rao and 

Yamagata 2004; Rao et al. 2007). 

CGCMs are generally able to reproduce the zonal dipole pattern of SST anoma-

lies and its seasonality (Cai et al. 2005; Spencer et al. 2005; Zhong et al. 2005; Saji et 

al. 2006; Song et al. 2007; Liu et al. 2011). This success is partly due to the ability of 

the CGCMs to capture the Indian monsoon and Sumatra upwelling maximum in bore-

al summer. The simulated wind and SST anomalies along the equator are significantly 

correlated, indicative of the Bjerknes feedback (Cai et al. 2005; Saji et al. 2006). The 

models also capture the western deepening and eastern shoaling of the thermocline 

during positive IOD events, which indicates successful reproduction of upwelling 

Kelvin and downwelling Rossby waves  (Cai et al. 2005; Spencer et al. 2005; Zhong 

et al. 2005; Saji et al. 2006). 

Less successfully simulated are the triggering and terminating mechanisms of the 

IOD. Cai et al. (2005) found in their CSIRO Mark 3 model that the simulated dipole 

often develops in the year following El Niño, while in observations the two phenome-

na typically evolve simultaneously. Their analysis revealed that simulated thermocline 

depth anomalies erroneously propagate from the tropical western Pacific through the 

Indonesian passages into the equatorial Indian Ocean, while in observations they 

propagate poleward along the western coast of Australia (Wijffels and Meyers 2004). 

This unrealistic propagation of model thermocline depth anomalies initiates model 

IOD events one year after model El Niño events. Cai et al. attribute this error to the 

coarse horizontal resolution in the model and the resulting poor representation of the 

Indonesian passages. 

Spencer et al. (2005) found erroneous behavior regarding the IOD termination in 

the Hadley Centre HadCM3 model. They conducted experiments with two different 
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vertical resolutions in the oceanic component of the model (20 levels and 40 levels) 

and found that IOD events in the lower resolution version did not terminate complete-

ly in boreal winter but persisted until the following year, which is rare in observations. 

This error is eliminated in the higher resolution version of the model, leading Spencer 

et al. to suggest that better representation of thermocline structure and coastal 

upwelling is necessary to correctly reproduce IOD termination. 

Another issue regards the magnitude of simulated IOD variability. Several groups 

have carried out systematic intermodel comparisons for this climate mode using 

CGCM output from CMIP3 and CMIP5 models. Liu et al. (2011) and Cai and Cowan 

(2013) find that models with larger IOD magnitude feature higher sensitivity regard-

ing the response of 1) equatorial winds to eastern pole SST anomalies; 2) eastern pole 

thermocline depth to equatorial wind anomalies; and 3) eastern pole SST to local 

thermocline anomalies (Fig. 13). As a result the Bjerknes feedback, which is com-

posed of these three elements (e.g. Keenlyside and Latif 2007), is unrealistically 

strong. The oversensitivity of the three elements is related to mean state errors, such 

as too shallow a thermocline in the equatorial eastern Indian Ocean, too strong 

upwelling, and an excessive vertical temperature gradient off Sumatra (Saji et al. 

2006; Liu et al. 2011; Cai and Cowan 2013). 

As discussed in subsection 4.1, the overactive Bjerknes feedback is associated 

with stronger than observed easterlies on the equator. The easterly bias also gives rise 

to an erroneous eastward displacement of the thermocline dome in the southern tropi-

cal Indian Ocean (Fig. 11; Yokoi et al. 2009; Nagura et al. 2013), which, in turn, 

causes unrealistic patterns of SST anomalies off the equator (Cai et al. 2005; Spencer 

et al. 2005; Saji et al. 2006). This indicates that equatorial wind biases play an im-

portant role in tropical Indian biases, similarly to the Atlantic basin (section 3). 



 36 

Currently CGCMs are able to predict IOD events at lead times of one to two sea-

sons (e.g., Wajsowicz 2005; Luo et al. 2007; Zhao and Hendon 2009). Longer lead 

times may be achievable, because thermocline depth anomalies in the southern Indian 

Ocean, a precursor for IOD events, can be observed a year ahead (McPhaden and Na-

gura 2014). These thermocline depth anomalies propagate as off-equatorial Rossby 

waves from the central basin to the western boundary, where they are reflected into 

equatorial Kelvin waves and eventually trigger IOD events. While previous studies 

have pointed to a link between mean state biases and IOD variability (Cai and Cowan 

2013), more work needs to be done to understand the underlying mechanisms and 

their relation to GCM parameterizations in order to accomplish more skillful predic-

tions. 

4.3 Representation of the southern Indian Ocean 

The southern Indian Ocean hosts a coupled ocean-atmosphere mode that is char-

acterized by a dipole structure in SST anomalies and is commonly referred to as the 

Indian Ocean subtropical dipole (IOSD; Behera et al. 2000; Behera and Yamagata 

2001). Studies have found that this subtropical mode has a significant impact on the 

climate of southern Africa (Reason 2001; Suzuki et al. 2004; Morioka et al. 2012) and 

Australia (England et al. 2006). During a positive IOSD event warm SST anomalies 

appear in the southwestern South Indian Ocean, whereas cold SST anomalies appear 

in the northeastern part. This pattern attains maximum strength in austral summer and 

is associated with an intensification and southward shift of the South Indian Ocean 

subtropical high (also known as Mascarene High). The first study of the IOSD using a 

CGCM was conducted by Suzuki et al. (2004). They found that the simulated magni-

tude of both positive and negative IOSD events was similar to observations. The dura-

tion of IOSD events in their CGCM is also realistic, except that negative events tend 
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to last a few months longer than observed. More recently, Morioka et al. (2012) used 

a CGCM to show that SST anomalies can be generated by LHF anomalies through 

their influence on mixed-layer depth (MLD). Decreased latent heat loss shoals the 

mixed layer and thus raises its sensitivity to shortwave radiation. On the other hand, 

increased latent heat loss deepens the mixed layer and thus lowers its sensitivity to 

shortwave radiation. The mixed-layer temperature tendency is expressed as the sum of 

the net surface heat flux term and oceanic terms, which comprise horizontal advection, 

entrainment, and horizontal and vertical diffusion: 

, 

where Tmix represents mixed-layer temperature, Q denotes surface heat flux,  is den-

sity, cp is specific heat, and H is mixed-layer thickness. The CMIP3 ensemble mean 

composite of each term, averaged from October through December, is shown in Fig-

ure 14. The contribution from the surface heat flux term shows a dipole pattern simi-

lar to the tendency term. In contrast, the amplitude of the contribution from the ocean-

ic effects is smaller and damps the IOSD. In the CGCM used by Morioka et al. (2012), 

the IOSD emerges as the first EOF of SST in the area 45-10°S, 40-110°E, whereas in 

the HadISST (Rayner et al. 2003) it emerges as the second EOF. Nevertheless, spatial 

pattern and explained variance agree well with observations.  

Kataoka et al. (2012) examined how CMIP3 models simulate the IOSD and find 

that most models simulate some form of dipole pattern and also reproduce the season-

al phase-locking of the IOSD. The latter is expected because almost all CMIP3 mod-

els capture the observed MLD minimum in austral summer, which is key to IOSD 

phase locking (Suzuki et al. 2004). The location and orientation of the SST anomaly 

poles, however, varies considerably across models. These variations are closely linked 

to the simulated anomalies of the Mascarene High. Thus errors in the pattern and po-
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sition of the IOSD are closely mirrored by SLP errors across models. The results of 

Morioka et al. (2012) indicate that the Mascarene High is the driving force behind the 

IOSD. Therefore, it seems that improving the representation of the Mascarene High 

should also lead to a better representation of the IOSD. Errors in the strength and po-

sition of the Mascarene High might be due to several factors. Kataoka et al. (2012) 

suggested that SLP biases in the region are related to the misrepresentation of a wave-

number 3 or 4 pattern of the atmospheric circulation in the Southern Hemisphere 

(Fauchereau et al. 2003) and ENSO teleconnections. Huang and Shukla (2006), on the 

other hand, suggested that the zonally elongated SST poles (which strongly influence 

SLP) in their CGCM are associated with an excessively strong Southern Annular 

Mode (Walker 1928; Thompson and Wallace 2000). Such an influence, however, was 

not evident in the CMIP3 models examined by Kataoka et al. (2012). If the annular 

mode does play a role in the SLP biases improved sea-ice physics might help remedy 

the problem. A further error source could be the strength and position of the simulated 

ITCZ, which is linked to the subtropics through the Hadley circulation. 

The IOSD is associated with rainfall anomalies over Southern Africa, which is a 

region whose population is particularly vulnerable to droughts and floods. Successful 

prediction of this climate mode is therefore of great importance. Recently, Yuan et al. 

(2014) assessed predictability of the IOSD and a similar climate mode in the South 

Atlantic, called the South Atlantic subtropical dipole (SASD; Venegas et al. 1997). 

Although their coupled model captured the IOSD reasonably well, the prediction 

skills were relatively low. This was mostly due to problems in simulating the south-

western pole of the IOSD, which is strongly influenced by meridional surface wind 

anomalies. Yuan et al. (2014) suggest that the failure to capture these meridional wind 

anomalies is one of the reasons for the relatively low skill in their model. Another rea-



 39 

son for the low prediction skill in the southwestern pole might be its relatively high 

latitude, which renders it subject to inherently unpredictable forcing from the midlati-

tudes. 

5  Challenges in land surface modeling 

5.1 Land surface models 

Coupled ocean-atmosphere modes of variability in the three major ocean basins 

affect the climate of the surrounding continents (sections 2-4). ENSO (Pacific Ocean), 

Atlantic Niño (Atlantic Ocean) and IOD (Indian Ocean) are “hot-spots” of strong 

ocean-atmosphere coupling. Similarly, “hot-spots” of strong land surface-atmosphere 

coupling have been identified in North America, the Sahel, equatorial Africa, tropical 

India, South America, and Central Asia (Koster et al. 2000, 2004; Xue et al. 2010). 

By modifying the exchanges of momentum, radiation, sensible and latent heat fluxes 

(Seneviratne et al. 2010, Ma et al. 2013), land processes (water cycle, vegetation), in-

fluence the climate over the continents (e.g. Koster et al. 2003, 2004; Taylor et al. 

2011, 2012), as well as over the oceans (e.g. Zeng et al. 1996; Richter et al. 2012a; 

Ma et al. 2013). 

The water stored on land is a key variable controlling numerous processes and 

feedback loops within the climate system (Seneviratne et al. 2010). The interaction 

between soil moisture and the atmosphere is expressed through the coupling of the 

former with evapotranspiration, temperature, and precipitation. To represent the land 

surface-atmosphere coupling in a climate model, a land surface model (LSM) is used. 

Current LSMs simulate the surface energy fluxes (latent and sensible heat flux, short- 

and longwave radiation, momentum), the hydrology (evapotranspiration, runoff, infil-

tration), and the carbon cycle (photosynthesis, nutrient uptake, gas emission) to repro-
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duce the exchanges between land surface and atmosphere (Pitman 2003; IPCC 2007; 

Seneviratne et al. 2010). Thus an accurate simulation of soil moisture-climate interac-

tions and feedbacks is needed in order to correctly simulate the climate system. For 

example, Richter et al. (2012a) pointed out that the influence of land surface condi-

tions in tropical South America and Africa exert a strong influence on local precipita-

tion, as well as on tropical Atlantic climate. In one of their experiments, the increase 

of soil moisture leads to less convective activity over the Congo basin. This is con-

sistent with the temperature feedback, in which higher soil moisture induces higher 

evaporation, which in turn initiates cooling of the surface and overlying air (cf. Sen-

eviratne et al. 2010). 

Problems with the representation of rainfall are present in both GCMs (Ines and 

Hansen 2006) and regional climate models (RCMs; Ceglar and Kajfež-Bogataj 2012). 

There is a tendency to generate too many rainfall events of too low intensity (Carter et 

al. 1994; Mearns et al. 1995; Goddard et al. 2001). For observed precipitation on local 

and regional scales there is a positive feedback, in which wetting of the soil by precip-

itation enhances the subsequent evaporation by the wetted soil. This increases precipi-

tation, closing the feedback loop (Koster 2011; Koster et al. 2003; Seneviratne at al. 

2010). Taylor et al. (2011), e.g., showed that in the Sahelian region, the probability of 

convective initiation is doubled over strong soil moisture gradients. The variation in 

soil moisture of length scales ~10-40 km exert a strong control on storm initiation. On 

the other hand, Taylor et al. (2012) have shown that there is a preference for afternoon 

rain over locally drier soil on scales of 50-100 km. 

Observed soil moisture and precipitation anomalies are also strongly coupled in 

the midlatitudes (Koster et al. 2003). Using the first phase of the Global Land-

Atmosphere Coupling Experiment (GLACE, Koster et al. 2004, 2006; Guo et al. 
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2006), Dirmeyer et al. (2006) explored the ability of twelve GCMs to represent the 

observed relationships between surface and atmospheric state variable and fluxes in 

midlatitude summer. They showed that most of the GCMs appear not to simulate cor-

rectly the land surface-atmosphere coupling. Systematic deficiencies in three LSMs 

have also been shown by Abramowitz et al. (2007).  

Land-surface processes form a major component of the West African Monsoon 

system (Redelsperger et al. 2006; Koster et al. 2004; Boone et al. 2009; Xue et al. 

2012). Domínguez et al. (2010) show that introducing fractional cloud cover and new 

radiation parameterizations in the PROMES RCM improves the latitudinal migration 

of the precipitation band. This is closely linked to more realistic downward solar radi-

ation at the surface, which reduce biases in surface heat fluxes. However, the timing 

of the main active and break monsoon periods are not improved, as they are more re-

lated to larger scale features such as the African Easterly Jet and Tropical Easterly Jet. 

The lateral boundary conditions in RCMs likely contribute to the misrepresentation of 

these large-scale features. More generally, Stevens and Bony (2013) suggest that a 

deeper understanding of the coupling between water and circulation is needed to im-

prove models. They recommend focusing on how clouds, moist convection and heat-

ing couple to the general circulation, in order to enhance the representation of the 

land-ocean-atmosphere coupling in simulations. This agrees with studies arguing that 

accurate measurements of observed land surface-atmosphere coupling (latent and sen-

sible heat, carbon exchange) will lead to a better understanding of the mechanisms 

(Dirmeyer et al. 2006; Koster 2011). 

5.2 Agro-hydrological modeling as a specific example 

Agro-hydrologic impact studies typically use input provided by GCMs, and 

therefore their predictive skill is highly dependent on that of the underlying large-
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scale model. In the particular case of agriculture, numerous studies have tried to trans-

late climate forecasts from GCMs into seasonal crop predictions (e.g. Hansen et al. 

2006). Climate impacts are a particularly sensitive issue in semi-arid regions, where 

the climate variability may have serious consequences for food security. In the fol-

lowing we describe a few of the challenges facing agro-hydrologic modeling, with an 

emphasis on the West African monsoon region. 

It is difficult to translate GCM output into crop yield predictions, mainly because 

of scale issues in both time and space (Blöschl and Sivapalan 1995; Schulze 2000). 

These include (1) the coarse horizontal resolution of GCMs relative to the processes 

governing yields (Baron et al. 2005), (2) the low variability of simulated GCM varia-

bles at the crop model scale, (3) the strong dependence of impact studies on the accu-

racy of climate input data (Berg et al. 2010) and the propagation of errors, and (4) the 

GCMs’ underrepresentation of local forcing, such as topography or water bodies. 

For impact studies, there is a need to handle appropriately the reduced variability 

of climatological variables through the application of downscaling techniques. This 

can potentially be achieved using various dynamic, empirical, or statistical-dynamic 

methods (von Storch 1995). Dynamic downscaling is performed by running an RCM 

over a limited area, in order to increase the resolution in space and the variability in 

time. An RCM is typically forced at the boundary by reanalysis or GCM data (Giorgi 

and Mearns 1999). However, similar problems as in GCMs still exist in RCM simula-

tions (see subsection 5.1). 

For crop production, the crucial climate variables are solar radiation (influences 

biomass and grains), rainfall (modulates the effect of solar radiation), temperature 

(determines length of vegetative cycle) and potential crop evapotranspiration (ET0 

hereafter). ET0 is a climate dependent parameter that estimates the potential loss of 
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water from both soil and vegetation. The reference value for ET0 (Allen et al. 1998) is 

calculated using relative humidity, air temperature, wind speed and insolation (or so-

lar radiation) at the surface. It can be considered as an integrative metric of the rele-

vant climate parameters (and their biases). 

We illustrate the role of the relevant climate parameters for the case of Senegal 

(Northwest Africa), which is characterized by a north-to-south gradient in rainfall (Fig. 

15a) with high the highest values in the southern part of the country. RCMs tend to 

underestimate precipitation in the south and thus have a weaker than observed rainfall 

gradient (Oettli et al. 2011). Another conspicuous feature is the large spread of sur-

face solar radiation and mean temperature estimated by RCMs in the region (Oettli et 

al. 2011). Many RCMs overestimate the solar radiation (Fig. 15b), particularly in the 

wet south of Senegal. Half of the RCMs overestimate mean temperatures (Fig. 15c), 

while the other half underestimates them, with uniform biases throughout the country. 

The biases in rainfall, shortwave radiation and temperature lead to an overestimation 

of ET0, particularly in the northern part of the country (Fig. 15d). As a consequence 

of the RCM biases, particularly those in rainfall, the crop yield is severely underesti-

mated in most case. The intermodel spread of precipitation, temperature, and 

shortwave radiation is mainly due to different physics and parameterizations in the 

RCMs, which lead to different simulation of the West African monsoon system, the 

main driver of climate variability in West Africa. 

As another illustration of the impact of climate model biases on yield predictions 

consider the study of Iizumi et al. (2010). Focusing on Japan, they show that CMIP3 

models underestimate summer temperatures (July-August) while overestimating 

warm-season insolation (May-October), which leads to unrealistic rice yields. 
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5.3 Ways toward land surface model improvement 

Impact studies consistently show that biases in land surface components of 

GCMs are amplified by RCMs and often lead to unrealistic crop (or hydrologic) simu-

lations. They also point out the need to correct GCM or RCM output before using 

them to drive any impact model. This can be done using different statistical transfor-

mations (Déqué 2007; Gudmundsson 2012). Statistical bias correction shows promis-

ing results in reducing biases in the mean. 

Abramowitz et al. (2007) showed that most of the biases in the LSM component 

are drastically reduced after the application of an a-posteriori correction. According 

to the authors, the use of a benchmarking technique at a variety of sites might aid the 

process of LSM refinement. Some other studies (Dirmeyer et al. 2006; Koster 2011) 

also argued for the need of a comprehensive observation network, documenting vari-

ous types of soil and vegetation. This might be achieved by current and upcoming sat-

ellite missions, providing an unprecedented quantification of soil-moisture patterns on 

the global scale (Koster 2011). It should be noted, however, that correction schemes 

generally do not improve the prediction of interannual variability. Results also point 

out the uncertainties remaining in our knowledge of atmospheric processes, and the 

complexity of representing these processes in GCMs or RCMs. Further improvement 

of climate and weather forecast models will be a vital step for advancing agro-

hydrological models. 

6  Can increased model resolution overcome biases? 

Any kind of numerical model of the atmosphere or ocean requires discretization 

of some sort, be it in physical space (e.g., finite difference or finite volume methods) 

or wavenumber space (spectral methods). Both atmosphere and ocean are character-
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ized by motions that involve scales ranging from thousands of kilometers (e.g. midlat-

itude jet streams), to tens of meters (e.g. eddies in the planetary boundary layer), to 

millimeters (e.g. viscous dissipation). The question then arises what resolution is 

needed in GCMs to adequately represent the large-scale circulation and to what extent 

unresolved processes contribute to the GCM biases. We examine this in the following, 

focusing on AGCMs in subsection 6.1 and OGCMs in subsection 6.2. In the last sub-

section (6.3) we discuss two particular studies that illustrate resolution issues in the 

tropical Pacific and Atlantic. We note that there is a rich literature on GCM resolution 

and that in this section we can merely sketch a few of the important issues. We refer 

the reader to Hamilton and Ohfuchi (2007) and Hecht and Hasumi (2008) for detailed 

reviews. 

6.1 Atmospheric model resolution 

Manabe et al. (1970) were perhaps the first to systematically investigate the im-

pact of model resolution on atmospheric model performance, though their study fo-

cused on the midlatitudes. There they showed that reducing grid size from 500 km to 

250 km led to much more realistic representation of frontal systems. Williamson et al. 

(1995) examined the performance of an AGCM at various horizontal resolutions rang-

ing from spectral truncation number T21 (equivalent to about 5.6º grid size) to T106 

(about 1.1º). Similarly to Manabe et al. (1970) they found significant midlatitude im-

provements going from low to medium resolution (~ 1.9º), but no significant changes 

at higher resolution. In terms of tropical climate they found some improvement in the 

Hadley Circulation, but other problems such as the double ITCZ bias were rather in-

sensitive to resolution. This was also the conclusion of Deser et al. (2006) and Hack et 

al. (2006). The latter reported that the improved surface winds and shortwave radia-

tion in the high-resolution atmospheric component had little impact on the coupled 
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simulation. Furthermore, interannual variability in the tropical Pacific did not improve 

with resolution, which agrees with the findings of Deser et al. (2006). 

Many studies point out the need for retuning model parameterizations when reso-

lution is increased (Boer and Lazare 1988; Williamson et al. 1995; Duffy et al. 2003). 

Nevertheless, even with careful tuning Duffy et al. (2003) could not achieve general 

improvements in tropical precipitation and surface winds when increasing resolution 

from T42 (~ 2.9º) to T239 (~ 0.5º). Pope and Stratton (2002) even report a degrada-

tion of the simulated precipitation when they increased resolution. They suggest that 

convective parameterizations need not only retuning but also modification as resolu-

tion increases. Furthermore, as resolution approaches the scales of the parameterized 

cloud systems (which starts at around 20 km), it is obvious that conventional convec-

tive parameterization schemes will have to be modified. This highlights the need for 

scale aware parameterizations that can adapt to a given model resolution. 

In the late 1990s a new type of cumulus parameterization, the so-called super pa-

rameterization, started being developed (Khairoutdinov and Randall 2001). The ap-

proach is to embed a cloud resolving model (CRM) into each GCM grid cell, using 

the GCM fields (temperature, humidity, etc.) as boundary condition. The advantage is 

that only microphysical processes have to be parameterized and that the system seam-

lessly converges into a global CRM (GCRM) as the embedded model is refined. Su-

per-parameterized GCMs have shown promising results in the tropics, where they re-

duce the wet precipitation bias over the oceans, alleviate the double ITCZ bias, and 

are also quite successful at simulating the Asian monsoon and intraseasonal phenom-

ena that remain elusive to most GCMs (Khairoutdinov et al. 2005; Stan et al. 2010; 

DeMott et al. 2011). On the other hand, not all aspects of the tropical circulation im-
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prove and the computational burden is substantial (though much lower than that of a 

GCRM). 

As computing power continues to increase there are many efforts at further refin-

ing model resolution. A relatively recent simulation using horizontal resolution of 

0.25º in the atmosphere and 0.1º in the ocean (McClean et al. 2011) showed some 

promising results in simulating tropical cyclones but shared many SST and precipita-

tion biases with CMIP5 era GCMs. Experiments with a GCRM (Tomita et al. 2005, 

Satoh et al. 2008) have also shown promising results but current computing resources 

do not permit simulation beyond a few months so that is not yet possible to establish a 

model climatology for comparison with observations. While long-term GCRM simu-

lations are not feasible yet, regional numerical weather prediction (NWP) models are 

already routinely run at cloud-resolving scales of up to 1 km (Hong and Dudhia 2011). 

The experience of these modeling centers will provide valuable guidance for GCRM 

development. 

6.2 Oceanic model resolution 

Mesoscale eddies contain most of the ocean’s kinetic energy (Scharffenberg and 

Stammer 2010) and are an important feature of the oceanic circulation due to their 

horizontal and vertical transport of heat, momentum, salinity and other tracers. They 

are particularly prevalent in regions of strong mean currents such as the Antarctic Cir-

cumpolar Current (Hallberg et al. 2006), the Agulhas Current (Biastoch and Krauss 

1999), or the Kuroshio Current (Miyazawa et al. 2004). Moreover, they might play a 

role in setting the vertical temperature structure of the ocean (Marshall et al. 2002). 

Since these eddies occur at scales of 100 km or less, an OGCM resolution of 10 km or 

higher is required for their adequate simulation. Models that could marginally resolve 

mesoscale eddies were developed in the 1990s (Semtner and Chervin 1992, e.g., used 
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a global OGCM with 0.25° horizontal resolution), with eddy resolving models starting 

to appear in the 2000s (e.g. Smith et al. 2000; Masumoto et al. 2004; Maltrud and 

McClean 2005). 

Several studies have investigated to what extent the effect of mesoscale eddies 

can be parameterized in OGCMs (Danabasoglu et al. 2008; Farneti et al. 2011; Bryan 

et al. 2014). The studies found that current parameterization schemes, such as the one 

developed by Gent and McWilliams (1990), can present eddy effects to some extent 

but that further refinements should be implemented. These analyses, however, fo-

cused on the mid and high latitudes. The impact of unresolved mesoscale eddies on 

the tropics has received less attention. Kirtman et al. (2012) compared two experi-

ments with the NCAR CCSM 3.5. The control experiment uses a 0.5º atmospheric 

component coupled to an oceanic component with zonal resolution of 1.2º and merid-

ional resolution varying from 0.27º at the equator to 0.54º in the mid-latitudes. The 

second simulation uses the same atmospheric and land-surface models but is coupled 

to an eddy-resolving 0.1º oceanic component. Their results suggest that increasing the 

horizontal resolution of the ocean model does not improve significantly the warm SST 

biases over the eastern tropical Pacific and Atlantic. 

6.3 Illustrative example: coupled high-resolution simulations with the GFDL 

model 

Delworth et al. (2012) present results from the high-resolution GFDL CM2.5. 

The model has an atmospheric resolution of approximately 50 km in the horizontal, 

with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in 

the tropics to 8 km at high latitudes, with 50 vertical levels. Results are compared to 

the GFDL CM2.1 climate model, which has somewhat similar physics but coarser 
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resolution, with 2.5° longitude by 2° latitude and 24 vertical levels in the atmosphere, 

and 1° (decreasing to 1/3° toward the equator) and 40 vertical levels in the ocean. 

Figure 16 shows the annual mean SST biases, relative to Reynolds SST (Smith et al. 

2008), of the GFDL CM2.1 control run and high-resolution GFDL CM2.5. The east-

ern Pacific warm SST bias is significantly reduced in CM2.5 relative to CM2.1. This 

appears to be at least partly due to the steep topography of the Andes, which is much 

better resolved by the high resolution in CM2.5. The topography plays an important 

role in simulating southerly winds and coastal upwelling over the eastern Pacific and 

thus reduces the warm SST bias there. The bias in the eastern Atlantic, however, 

shows little improvement. This suggests that the mechanism for the eastern Pacific 

SST bias is different from that of the eastern Atlantic. 

Doi et al. (2012) used the CM 2.1 and CM 2.5 models described above to investi-

gate the characteristics and sources of SST and precipitation biases associated with 

the Atlantic ITCZ. CM 2.5 has an improved simulation of the annual mean and the 

annual cycle of the rainfall over the Sahel and northern South America, while CM2.1 

shows excessive Sahel rainfall and lack of northern South America rainfall in boreal 

summer (Fig. 17). The marked improvement in CM2.5 is due not only to the high-

resolved orography but also a significant reduction of biases in the seasonal meridio-

nal migration of the ITCZ. In particular, the seasonal northward migration of the 

ITCZ in boreal summer is coupled to the seasonal variation of SST and the subsurface 

doming of the thermocline in the northeastern tropical Atlantic, known as the Guinea 

Dome. Improved simulation of the ITCZ allows for better representation of the cou-

pled processes that are important for an abrupt seasonally phase-locked decay of in-

terannual SST anomalies in the northern tropical Atlantic related to the meridional 

mode of variability. Nevertheless, the differences between CM2.5 and CM2.1 are not 
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sufficient to reduce the warm SST biases in the eastern equatorial region and Angola–

Benguela area. The weaker than observed southerly winds along the southwestern Af-

rican coast associated with the excessive southward migration bias of the ITCZ may 

be a key to improve the warm SST biases there (see also Richter et al. 2012b). 

7  Summary and discussion 

7.1  Summary 

We first summarize the challenges highlighted in sections 2 through 6. Figure 18 

provides a visual summary of some of the features discussed here. 

In the tropical Pacific GCMs tend to simulate too vigorous a Walker circulation 

with excessive convection over the western warm pool and stronger than observed 

easterly wind stress on the equator. In boreal spring, the simulated ITCZ is often lo-

cated well south of the equator whereas in observations it tends to be close to the 

equator. The south-equatorial ITCZ is associated with pronounced cross-equatorial 

surface winds, which, in combination with the stronger than observed equatorial east-

erlies, cause excessive upwelling and cooling in the equatorial ocean. The resulting 

cool bias on the equator further discourages deep convection there and thus reinforces 

the precipitation and wind biases. 

The simulated southeastern Pacific SST tends to be 3-4K warmer than observed. 

This is at least partly related to the models’ failure to simulate sufficient low-level 

cloud cover over the region. Deficiencies in the representation of low-level cloud, 

however, are not enough to account for the lack of eastern Pacific meridional asym-

metry that plagues most coupled simulations. 

Many models simulate a realistic amplitude of the interannual variability associ-

ated with ENSO, though this may partly be due to cancellation of errors. Common 
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shortcomings regarding the simulation of ENSO are insufficient seasonal phase lock-

ing and failure to reproduce the observed asymmetry between warm and cold events. 

Despite these GCM biases, some current prediction systems are able to provide skill-

ful forecasts at lead times of one year and beyond. To what extent further model im-

provement can push the envelope remains to be seen. 

Mean state biases in the equatorial Atlantic are, to some extent, of opposite sign 

to those in the Pacific. The equatorial surface easterlies are too weak and eastern SSTs 

too warm. There is a pronounced seasonality in the biases, with wind and SST biases 

dominant in boreal spring and summer, respectively. The weaker than observed east-

erlies in MAM are associated with deficient precipitation over tropical South America, 

and excessive precipitation over tropical Africa and south of the equator over the 

ocean. These errors are also present, albeit weaker, in standalone AGCM experiments 

with SST prescribed from observations, which points to an atmospheric error source. 

Sensitivity tests with various convection schemes support the notion that the partition-

ing between oceanic and terrestrial convection plays a vital role in setting up equato-

rial surface winds. 

There are also oceanic sources of tropical Atlantic biases. One of them lies in the 

OGCMs’ inability to adequately resolve the sharp temperature gradients in the equa-

torial thermocline, which leads to the under-representation of upwelling-related cool-

ing. This OGCM deficiency also plays a major role in the severe warm SST biases 

along the southwest African coast. Moreover, the poleward Angola current further 

exacerbates these biases by advecting warmer than observed waters from the equator 

toward the coastal upwelling regions in the South Atlantic. 

Due to the severe Atlantic cold tongue biases many models cannot adequately 

represent the zonal mode that dominates equatorial Atlantic variability. The warm bi-
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as in the cold tongue region leads to too much precipitation over the ocean, which 

hampers skillful prediction of the West African monsoon. As a consequence most 

seasonal prediction systems still show little skill in the region, though lack of observa-

tional data for model initialization may also play a role in this. Climate change projec-

tions may also be affected by the cold SST bias in the tropical North Atlantic, where 

most GCMs underpredict present day cyclone activity. 

Over the equatorial Indian Ocean, GCMs typically simulate easterly surface 

winds, in contrast to the observations where surface winds are westerly. Thus models 

suffer from an easterly surface wind bias, an error that is also prevalent in the equato-

rial Pacific. Consistent with the easterly bias, equatorial SSTs in the equatorial Indian 

Ocean tend to have a cold bias and the thermocline is too shallow in the eastern part 

of the basin. Precipitation biases also resemble those in the Pacific, with excessive 

precipitation south of the equator. A feature that is unique to Indian Ocean simula-

tions is the insufficient meridional shear of zonal wind stress in many GCMs. This 

weakens wind stress-curl-related upwelling south of the equator and leads to a warm 

bias in the southwestern Indian Ocean. In the absence of southwest Indian Ocean Ek-

man upwelling, the excessive equatorial easterlies and associated Kelvin and Rossby 

waves produce a “false” thermocline dome in the southeastern Indian Ocean. 

Despite significant biases in the tropical Indian Ocean, many GCMs are able to 

reproduce some aspects of the dominant interannual mode of variability in the region, 

the Indian Ocean dipole. Common GCM shortcomings regarding the dipole mode are 

spurious transmission of Rossby waves through the poorly resolved Indonesian pas-

sages and insufficient vertical temperature stratification, which affect event onset and 

termination, respectively. Another important mode of interannual variability, the sub-

tropical Indian Ocean dipole mode, is captured by many GCMs but often shifted rela-
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tive to its observed position. This appears to be a consequence, rather than the cause, 

of a similarly shift in the South Indian Ocean subtropical high. 

Many studies ask the question how slowly evolving ocean anomalies influence 

conditions over land. However, convection over land surfaces also has an important 

influence on the tropical oceans, particularly for the comparatively small Indian and 

Atlantic Ocean basins. Thus biases in the land surface components of GCMs have the 

potential to induce biases over the oceans as well, and this is apparent for the case of 

the tropical Atlantic Ocean and, to some extent, that of the Indian Ocean. To what ex-

tent terrestrial precipitation biases are due to deficiencies in land surface models needs 

further analysis. While for the midlatitudes there is a clear indication that models mis-

represent the coupling between soil moisture and precipitation, the tropical land sur-

faces are typically covered by rain forests, which are difficult to observe from satellite. 

Since ground-based observations for these regions are also sparse, there is little data 

to compare models against.   

An important application for GCM simulations is to provide input for agro-

hydrological models, such as crop models. As the example of the West African mon-

soon region shows, both GCM rainfall and insolation biases associated with sub-grid 

scale parameterizations as well as shortcomings in large-scale circulation features 

conspire to create unrealistic input values for crop models. The scale difference be-

tween GCMs and crop models necessitates the use of downscaling techniques, which 

further amplifies initial errors. These factors partly explain why reliable crop yield 

predictions remain a challenge. 

Increasing model resolution improves many aspects of the simulated climate in 

both the atmosphere and ocean, though these improvements mainly concern the mid 

and high latitudes. Increased resolution also has the potential to alleviate some of the 
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tropical issues, such as resolving steep orography, the sharp oceanic thermocline, and 

the Indonesian passages. This can also contribute to reducing the scale difference be-

tween GCM and agro-hydrological models. On the other hand, several examples in 

this chapter illustrate that increasing model resolution is not a panacea. Furthermore, 

the central issue of (at least partially) resolving cumulus convection remains out of 

reach for current climate simulations and may continue to be so for years to come. 

Thus improving subgrid-scale parameterizations must remain a focus of GCM devel-

opment. 

7.2  Discussion 

A problem common to most GCMs is the cold SST bias that prevails over the 

tropical oceans. Only the eastern subtropical Pacific and Atlantic Oceans are marked 

by warm biases in all GCMs. These biases are particularly pronounced in the South-

ern Hemisphere. 

Despite the dominance of cold SST biases over the tropical oceans, GCMs tend 

to overpredict precipitation there. The only notable exception is the equatorial Pacific, 

where models underpredict precipitation over colder than observed SST. It is there-

fore also the only region where there is a good match between the patterns of SST and 

precipitation errors. Thus it seems that, generally speaking, SST errors cannot explain 

the wet precipitation biases over large portions of the tropical oceans. This view is 

also supported by AGCM experiments forced with observed SST, which typically suf-

fer from much the same precipitation biases as their coupled counterparts, albeit in 

weaker form. Thus factors other than the underlying SST must contribute to localizing 

deep convection in GCMs. Such factors might be convection over the adjacent conti-

nents, remote forcing from the Pacific warm pool, and lower tropospheric moisture 
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convergence, which does not necessarily occur over SST maxima (see e.g. Biasutti et 

al. 2006). 

A possible explanation for the pervasive cold SST biases in GCMs might be the 

excessive precipitation and associated cloud cover. Results by Lin (2007), however, 

seem to contradict this notion. Another explanation might be the models’ tendency to 

produce too much mixing in the upper ocean, which brings too much cold water to the 

ocean surface while eroding the sharp temperature gradient of the thermocline. 

The simulated equatorial trades are stronger than observed in the Pacific and In-

dian Oceans but weaker than observed in the Atlantic. The easterly bias is consistent 

with an ITCZ and associated equatorial doldrums that, in the annual average, are far-

ther from the equator than observed. This explanation works for the equatorial Pacific 

and Indian Oceans, but not for the equatorial Atlantic where westerly biases prevail 

despite an ITCZ that is south of the equator in boreal winter and spring. Possibly this 

is related to the continental influences on the equatorial trades in the relatively small 

Atlantic basin (Richter and Xie 2008; Richter et al. 2012a). 

Two issues appear to be central to GCM biases in the tropics. The first is the real-

istic representation of deep convection and its relation to surface winds. The second 

concerns the oceanic equatorial thermocline, which is closely related to the parameter-

ization of oceanic vertical mixing. Certainly, the importance of both these issues has 

been recognized by the community since the early days of general circulation model-

ing. Accordingly many scientists have worked hard to improve parameterizations and, 

as a result, models have improved substantially over the last few decades. Notwith-

standing this progress, many problems persist in state-of-the-art GCMs, such as the 

Pacific double ITCZ and the Atlantic warm SST bias. How should the community ad-

dress these issues? Recent diagnostic studies have narrowed down on the error 
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sources but this is not sufficient to improve models. More effort needs to be spent on 

bridging the gap between diagnostic studies and model development. Many of the de-

ficiencies we identify in model output, such as the double ITCZ, are emergent proper-

ties of numerical model simulations. That is to say, they are not related in any simply 

way, to a GCM’s parameterizations but rather arise out of the complex interactions 

between individual model components. In order to provide actionable advice to model 

developers we need to have a better understanding of how these interactions combine 

to produce certain model features. Such efforts should benefit from the increasing 

body of ground and satellite based observations. 

While there is reason to be optimistic about overcoming some of the problems in 

current GCMs, it is likely that many issues will remain unsolved for a long time. 

Since seasonal predictions and climate projections are central applications for GCMs, 

it will be important to better understand how and to what extent these are affected by 

model biases. While it is generally thought that there is a close correspondence be-

tween general model performance and prediction skills, this might not hold true in all 

circumstances and awaits deeper analysis. Such efforts should provide valuable guid-

ance for model development and may inform schemes for correcting model output. 
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Captions 

 

Table 1.   List of the 25 coupled GCMs that are part of the CMIP5 ensemble mean 

shown in Figs. 1b, 2b, and 3, and list of the 22 coupled GCMs that are part of the 

CMIP3 ensemble mean shown in Fig. 14. 

 

Figure 1.   Schematic equatorial cross sections of tropical Pacific for (a) neutral 

conditions, and (b) El Niño conditions. The Walker cell (yellow arrows) dominates 

the atmospheric circulation with surface winds flowing from the eastern Pacific cold 

tongue (blue ellipse in panel a) toward the western Pacific warm pool (red ellipse in a), 

where high SST drive deep convection. In the upper troposphere this is accompanied 

by divergent flow, with winds blowing toward the eastern Pacific, where they sink 

over the relatively cool SST. The surface winds drive the westward equatorial ocean 

current at the surface and, indirectly, the eastward undercurrent. Upwelling of cold 

waters (dark blue shading) from below the sharp vertical temperature gradient (ther-

mocline) helps to keep the eastern Pacific cool. During El Niño events (panel b), the 

surface winds weaken, warm waters and convection move to the center of the basin, 

and upwelling weakens. This is accompanied by deepening of the thermocline in the 

east and shoaling in the west. 

 

Figure 2.   Climatological annual mean precipitation (mm/day) in (a) the GPCP 

observations (a blend of satellite and rain gauge data; Adler et al. 2003), and (b) the 

ensemble mean of CMIP5 pre-industrial control simulations (see Table 1). Features of 

interest are labeled in panel a. These are: the North Pacific and North Atlantic storm 
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tracks, the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence 

Zone (SPCZ), and the South Atlantic Convergence Zone (SACZ). 

 

Figure 3.   (a) Climatological annual mean SST (ºC) in the OISST observations (a 

blend of in-situ and satellite data; Reynolds et al. 2002). (b) SST errors (K) relative to 

OISST for an ensemble mean of CMIP5 pre-industrial control simulations. 

 

Figure 4.   Annual mean wind stress (vectors;  N m-2; reference vector in upper 

right corner) over the tropical oceans (TropFlux, http://www.locean-

ipsl.upmc.fr/tropflux/). The shading indicates the vector magnitude. 

 

Figure 5.   Seasonal cycle of zonal mean SST (colors) and precipitation (gray 

shaded) in the eastern tropical Pacific Ocean (140-90°W). Vectors represent the wind 

on the equator. Panel (0) shows OISST and TRMM satellite data (Adler et al. 2000). 

Panels (1-f) are CMIP3-generation GCMs. (from de Szoeke and Xie 2008) 

 

Figure 6.   Biases of the CMIP5 ensemble mean (see Table 1) relative to observed 

precipitation from GPCP, near-surface winds from ICOADS ship-based observations 

(Woodruff et al. 2011), and SST from OISST. (a) Boreal spring (MAM) biases of 

precipitation (shading; mm d-1) and near-surface winds (reference vector 1 m s-1). (b) 

Boreal summer (JJA) biases of SST (K). 

 

Figure 7.   Boreal spring (MAM) precipitation (shading; mm/day) and SST (con-

tours; interval 1ºC) in (a) Climate Prediction Center (CPC) Merged Analysis of pre-

cipitation (CMAP; Xie and Arkin, 1996), (b) UTCM with Kuo convection scheme, (c) 
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UTCM with Emanuel convection scheme, and (d) UTCM with Tiedtke convection 

scheme. 

 

Figure 8.   Schematics of the Angola Benguela Frontal Zone (ABFZ) and the re-

gional ocean circulation system. Vectors indicate the annual-mean winds, color and 

contour show the annual mean SST, and solid (dashed) arrows show major surface 

(subsurface) currents. The features shown include the equatorward Benguela Current 

(BC), the poleward Guinea and Angola currents (GC and AC, respectively), and the 

eastward South Equatorial Counter Current (SECC). Subsurface currents include the 

eastward Equatorial Under Current (EUC) and South Equatorial Under Current 

(SEUC). At about 10ºS there is a clockwise circulation associated with the shallow 

mixed layer of the Angola Dome (AD). 

 

Figure 9. The alongshore temperature in °C averaged within a 1° wide band adja-

cent to the coast of Angola and Namibia from the equator to 30°S in NCEP/CFSR re-

analysis product (Saha et al. 2010). 

 

Figure 10.   Composites of anomalous SST (shading; units K), precipitation (con-

tours; interval 1 mm/d), and surface winds (vectors; reference 1 m/s), based on ERA 

40 data from 1958-2001 (Uppala et al. 2005). The panels show (a) the meridional 

mode, composited on 2 standard deviations of the SST difference between NTA (40-

10ºW, 10-20ºN) and STA (20ºW-20ºE, 25-5ºS), (b) the zonal mode (Atlantic Niño), 

based on 2 standard deviations of SST in the ATL3 region (20ºW-0, 3ºS-3ºN), and (c) 

the Benguela Niño, based on 2 standard deviations of SST in the ABA region (8ºE-
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coast, 20-10ºS). The averaging areas for the three indices are marked by grey rectan-

gles in the individual panels. 

 

Figure 11.   (a) Annual mean 20°C isotherm depth based on the World Ocean At-

las 2009 observations (Locarnini et al. 2006). (b) Same as (a), but for the ensemble 

average of three CGCMs that erroneously displace the upwelling dome (shallow 

thermocline) eastward (IPSL-CM5B-LR, BCC-CSM1.1, and FGOALS-g2). The 

CGCM results are from experiment “historical” of the CMIP5 intercomparison, in 

which models are forced with historical concentrations of greenhouse gases. The 

dome is located in the southwestern Indian Ocean in observations, whereas it is near 

Indonesia in the models. 

 

Figure 12: A composite dipole mode event derived from GISST 2.3b SST 

(Rayner et al. 1996), NCEP reanalysis winds (Kalnay et al. 1996), and CMAP precipi-

tation. Evolution of composite SST and surface wind anomalies are shown from (a) 

May-June to (d) November-December. The statistical significances of the analyzed 

anomalies were estimated by the two-tailed t-test. Anomalies of SSTs and winds ex-

ceeding 90% significance are indicated by shading and bold arrows, respectively. 

(from Saji et al. 1999) 

 

Figure 13.   Intermodel relationship between the amplitude of the IOD (measured 

by the Dipole Mode Index, DMI), and components of the Bjerknes feedback, includ-

ing the sensitivity (per one standard deviation of the predictor) of (a) 850-mb winds to 

the DMI, (b) SST to thermocline depth, and (c) thermocline depth to 850-mb winds. 

The sensitivity is obtained by multiplying regression coefficient with a one-standard 



 83 

deviation value of the predictor. Wind is averaged over the central-eastern equato-rial 

tropical Indian Ocean (EEIO, Eq.-10°S, 80°E-100°E). SST and thermocline are aver-

aged over the eastern pole of the IOD (Eq.-10°S, 90°E-110°E). Observations used are 

listed in the legend. The p-values for all three correlation coefficients are less than 

0.0001. (from Cai and Cowan 2013) 

 

Figure 14.   CMIP3 ensemble mean (see Table 1) composites of (a) mixed-layer 

temperature tendency, (b) surface heat flux, and (c) oceanic term, which is sum of the 

horizontal advection, entrainment, and horizontal and vertical diffusion. Units are 10-8 

K s-1. 

 

Figure 15.   Seasonal mean biases of rainfall (a), solar radiation (b), mean tem-

perature (c) and potential evapotranspiration (d) for ERA-Interim reanalysis (Dee et al. 

2011) and nine regional configurations for 12 synoptic stations across Senegal. Mean 

biases are computed over the 1990-2000 period from 1 May-30 November (from Oet-

tli et al. 2011, Environ. Res. Lett. 6 (2011), doi:10.1088/1748-9326/6/1/014008). 

 

Figure 16.   Maps of errors in simulation of annual mean sea‐surface temperature 

(SST) from the Reynolds SST data (provided by the NOAA‐CIRES Climate Diagnos-

tics Center, Boulder, Colorado, USA, from their Web site at http:// 

http://www.esrl.noaa.gov/psd/). Units are K. (a) CM2.1. (b) CM2.5. (from Delworth 

et al. 2012) 

 

Figure 17.   (a) Seasonal cycle of rainfall (mm/day) averaged in the Sahel region 

(10º–20ºN, 20ºW–10ºE) for CMAP (black line with circles), GPCP (grey line with 
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crosses), CM 2.1 (red line with squares), and CM 2.5 (blue line with triangles). (b) As 

in (a) but for the northern South American region: 10ºS–10ºN, 75º–55ºW. (from Doi 

et al. 2012) 

 

Figure 18.   Schematic summarizing common GCM biases in the tropics. The in-

dividual features highlighted are: surface wind biases (hollow arrows), cold and warm 

SST biases (blue and red ellipses, respectively), and wet and dry precipitation biases 

(grey ellipses and yellow dots, respectively). The shading over the continents repre-

sents orographic heights. 
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A. Tables 

modeling center CMIP5 ensemble CMIP3 ensemble 
Commonwealth Scientific and Industrial Research 
Organization (CSIRO) and Bureau of Meteorology 
(BOM) Australia 

ACCESS1-0  
ACCESS1-3  

Beijing Climate Center, China Meteorological Ad-
ministration 

bcc-csm1-1  

College of Global Change and Earth System Science, 
Beijing Normal University 

BNU-ESM  

Canadian Centre for Climate Modelling and Analysis CanESM2 cccma_cgcm3_1 
cccma_cgcm3_1_t63 
 National Center for Atmospheric Research CCSM4 ncar_ccsm3_0 

  ncar_pcm1 
Centre National de Recherches Météorologiques  cnrm_cm3 
Commonwealth Scientific and Industrial Research 
Organization 

CSIRO-Mk3-6-0 csiro_mk3_0 

EC-EARTH consortium EC-EARTH  
Istituto Nazionale di Geofisica e Vulcanoglogia  ingv_echam4 
LASG, Institute of Atmospheric Physics, Chinese 
Academy of Sciences 

FGOALS-g2 iap_fgoals1_0_g 
FGOALS-s2  

The First Institute of Oceanography, SOA, China FIO-ESM  
NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3 gfdl_cm2_0 

GFDL-ESM2G gfdl_cm2_1 
GFDL-ESM2M  

NASA Goddard Institute for Space Studies GISS-E2-H giss_aom 
GISS-E2-R giss_model_e_h 

giss_model_e_r 

Met Office Hadley Centre HadGEM2-ES ukmo_hadcm3 
  ukmo_hadgem1 
Institute for Numerical Mathematics inmcm4 inmcm3_0 
Institut Pierre-Simon Laplace  ipsl_cm4 
Meteorological Institute, University of Bonn  miub_echo_g 
Atmosphere and Ocean Research Institute (The Uni-
versity of Tokyo), National Institute for Environmen-
tal Studies, and Japan Agency for Marine-Earth Sci-
ence and Technology 

MIROC4h miroc3_2_medres 
MIROC5 miroc3_2_hires 
MIROC-ESM  

Max-Planck-Institut für Meteorologie (Max Planck 
Institute for Meteorology) 

MPI-ESM-LR mpi_echam5 
MPI-ESM-MR  

Meteorological Research Institute MRI-CGCM3 mri_cgcm2_3_2a 
Norwegian Climate Centre NorESM1-M  

 

Table 1.   List of the 25 coupled GCMs that are part of the CMIP5 ensemble mean shown in Figs. 

1b, 2b, and 3, and list of the 22 coupled GCMs that are part of the CMIP3 ensemble mean shown in Fig. 

14. 
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B. Figures 

 

Figure 1.   Schematic equatorial cross sections of tropical Pacific for (a) neutral conditions, and 

(b) El Niño conditions. The Walker cell (yellow arrows) dominates the atmospheric circulation with 

surface winds flowing from the eastern Pacific cold tongue (blue ellipse in panel a) toward the western 

Pacific warm pool (red ellipse in a), where high SST drive deep convection. In the upper troposphere 

this is accompanied by divergent flow, with winds blowing toward the eastern Pacific, where they sink 

over the relatively cool SST. The surface winds drive the westward equatorial ocean current at the sur-

face and, indirectly, the eastward undercurrent. Upwelling of cold waters (dark blue shading) from be-

low the sharp vertical temperature gradient (thermocline) helps to keep the eastern Pacific cool. During 

El Niño events (panel b), the surface winds weaken, warm waters and convection move to the center of 

the basin, and upwelling weakens. This is accompanied by deepening of the thermocline in the east and 

shoaling in the west. 
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Figure 2.   Climatological annual mean precipitation (mm/day) in (a) the GPCP observations (a 

blend of satellite and rain gauge data; Adler et al. 2003), and (b) the ensemble mean of CMIP5 pre-

industrial control simulations (see Table 1). Features of interest are labeled in panel a. These are: the 

North Pacific and North Atlantic storm tracks, the Intertropical Convergence Zone (ITCZ), the South 

Pacific Convergence Zone (SPCZ), and the South Atlantic Convergence Zone (SACZ). 
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Figure 3.   (a) Climatological annual mean SST (ºC) in the OISST observations (a blend of in-situ 

and satellite data; Reynolds et al. 2002). (b) SST errors (K) relative to OISST for an ensemble mean of 

CMIP5 pre-industrial control simulations. 
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Figure 4.   Annual mean wind stress (vectors;  N m-2; reference vector in upper right corner) over 

the tropical oceans (TropFlux, http://www.locean-ipsl.upmc.fr/tropflux/). The shading indicates the 

vector magnitude. 
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Figure 5.   Seasonal cycle of zonal mean SST (colors) and precipitation (gray shaded) in the east-

ern tropical Pacific Ocean (140-90°W). Vectors represent the wind on the equator. Panel (0) shows 

OISST and TRMM satellite data (Adler et al. 2000). Panels (1-f) are CMIP3-generation GCMs. (from 

de Szoeke and Xie 2008) 
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Figure 6.   Biases of the CMIP5 ensemble mean (see Table 1) relative to observed precipitation 

from GPCP, near-surface winds from ICOADS ship-based observations (Woodruff et al. 2011), and 

SST from OISST. (a) Boreal spring (MAM) biases of precipitation (shading; mm d-1) and near-surface 

winds (reference vector 1 m s-1). (b) Boreal summer (JJA) biases of SST (K). 
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Figure 7.   Boreal spring (MAM) precipitation (shading; mm/day) and SST (contours; interval 

1ºC) in (a) Climate Prediction Center (CPC) Merged Analysis of precipitation (CMAP; Xie and Arkin, 

1996), (b) UTCM with Kuo convection scheme, (c) UTCM with Emanuel convection scheme, and (d) 

UTCM with Tiedtke convection scheme. 
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Figure 8.   Schematics of the Angola Benguela Frontal (ABF) zone and the regional ocean circu-

lation system. Vectors indicate the annual-mean winds, color and contour show the annual mean SST, 

and solid (dashed) arrows show major surface (subsurface) currents. The features shown include the 

equatorward Benguela Current (BC), the poleward Guinea and Angola currents (GC and AC), and the 

eastward South Equatorial Counter Current (SECC). Subsurface currents include the eastward Equato-

rial Under Current (EUC) and South Equatorial Under Current (SEUC). At about 10ºS there is a 

clockwise circulation associated with the shallow mixed layer of the Angola Dome (AD). 
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Figure 9. The alongshore temperature in °C averaged within a 1° wide band adjacent to the coast 

of Angola and Namibia from the equator to 30°S in NCEP/CFSR reanalysis product (Saha et al. 2010). 
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Figure 10.   Composites of anomalous SST (shading; units K), precipitation (contours; interval 1 

mm/d), and surface winds (vectors; reference 1 m/s), based on ERA 40 data from 1958-2001 (Uppala 

et al. 2005). The panels show (a) the meridional mode, composited on 2 standard deviations of the SST 

difference between NTA (40-10ºW, 10-20ºN) and STA (20ºW-20ºE, 25-5ºS), (b) the zonal mode (At-

lantic Niño), based on 2 standard deviations of SST in the ATL3 region (20ºW-0, 3ºS-3ºN), and (c) the 

Benguela Niño, based on 2 standard deviations of SST in the ABA region (8ºE-coast, 20-10ºS). The 

averaging areas for the three indices are marked by grey rectangles in the individual panels. 
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Figure 11.   (a) Annual mean 20°C isotherm depth based on the World Ocean Atlas 2009 obser-

vations (Locarnini et al. 2006). (b) Same as (a), but for the ensemble average of three CGCMs that er-

roneously displace the upwelling dome (shallow thermocline) eastward (IPSL-CM5B-LR, BCC-

CSM1.1, and FGOALS-g2). The CGCM results are from experiment “historical” of the CMIP5 inter-

comparison, in which models are forced with historical concentrations of greenhouse gases. The dome 

is located in the southwestern Indian Ocean in observations, whereas it is near Indonesia in the models. 
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Figure 12: A composite dipole mode event derived from GISST 2.3b SST (Rayner et al. 1996), 

NCEP reanalysis winds (Kalnay et al. 1996), and CMAP precipitation. Evolution of composite SST 

and surface wind anomalies are shown from (a) May-June to (d) November-December. The statistical 

significances of the analyzed anomalies were estimated by the two-tailed t-test. Anomalies of SSTs and 

winds exceeding 90% significance are indicated by shading and bold arrows, respectively. (from Saji et 

al. 1999) 
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Figure 13.   Intermodel relationship between the amplitude of the IOD (measured by the Dipole Mode 

Index, DMI), and components of the Bjerknes feedback, including the sensitivity (per one standard 

deviation of the predictor) of (a) 850-mb winds to the DMI, (b) SST to thermocline depth, and (c) 

thermocline depth to 850-mb winds. The sensitivity is obtained by multiplying regression coefficient 

with a one-standard deviation value of the predictor. Wind is averaged over the central-eastern equato-

rial tropical Indian Ocean (EEIO, Eq.-10°S, 80°E-100°E). SST and thermocline are averaged over the 

eastern pole of the IOD (Eq.-10°S, 90°E-110°E). Observations used are listed in the legend. The p-

values for all three correlation coefficients are less than 0.0001. (from Cai and Cowan 2013) 
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Figure 14.   CMIP3 ensemble mean (see Table 1) composites of (a) mixed-layer temperature ten-

dency, (b) surface heat flux, and (c) oceanic term, which is sum of the horizontal advection, entrain-

ment, and horizontal and vertical diffusion. Units are 10-8 K s-1. 

 

 

 

Figure 15.   Seasonal mean biases of rainfall (a), solar radiation (b), mean temperature (c) and po-

tential evapotranspiration (d) for ERA-Interim reanalysis (Dee et al. 2011) and nine regional configura-

tions for 12 synoptic stations across Senegal. Mean biases are computed over the 1990-2000 period 

from 1 May-30 November (from Oettli et al. 2011, Environ. Res. Lett. 6 (2011), doi:10.1088/1748-

9326/6/1/014008). 
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Figure 16.   Maps of errors in simulation of annual mean sea‐surface temperature (SST) from the 

Reynolds SST data (provided by the NOAA‐CIRES Climate Diagnostics Center, Boulder, Colorado, 

USA, from their Web site at http:// http://www.esrl.noaa.gov/psd/). Units are K. (a) CM2.1. (b) CM2.5. 

(from Delworth et al. 2012) 
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Figure 17.   (a) Seasonal cycle of rainfall (mm/day) averaged in the Sahel region (10º–20ºN, 

20ºW–10ºE) for CMAP (black line with circles), GPCP (grey line with crosses), CM 2.1 (red line with 

squares), and CM 2.5 (blue line with triangles). (b) As in (a) but for the northern South American re-

gion: 10ºS–10ºN, 75º–55ºW. (from Doi et al. 2012) 
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Figure 18.   Schematic summarizing common GCM biases in the tropics. The individual features high-

lighted are: surface wind biases (hollow arrows), cold and warm SST biases (blue and red ellipses, re-
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spectively), and wet and dry precipitation biases (grey ellipses and yellow dots, respectively). The 

shading over the continents represents orographic heights. 

 

 

 

 

 

 

 


